Bài 1: Xác suất có điều kiện

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Hộp thứ nhất có 4 viên bi xanh và 6 viên bi đỏ. Hộp thứ hai có 5 viên bi xanh và 4 viên bi đỏ. Các viên bi có cùng kích thước và khối lượng. Lấy ra ngẫu nhiên 1 viên bi từ hộp thứ nhất chuyển sang hộp thứ hai. Sau đó lại lấy ra ngẫu nhiên 1 viên bi từ hộp thứ hai.

Sử dụng sơ đồ hình cây, tính xác suất của các biến cố:

A: “Viên bi lấy ra từ hộp thứ nhất có màu xanh và viên bi lấy ra từ hộp thứ hai có màu đỏ”;

B: “Hai viên bi lấy ra có cùng màu”.

datcoder
28 tháng 10 lúc 5:34

Gọi \(M\) là biến cố “Viên bi lấy ra ở hộp thứ nhất có màu xanh” và \(N\) là biến cố “Viên bi lấy ra ở hộp thứ hai có màu đỏ”.

Xác suất để lấy ra được 1 viên bi xanh ở hộp thứ nhất là \(\frac{4}{{10}} = 0,4\).

Nếu ta lấy được viên bi xanh ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 6 viên bi xanh và 4 viên bi đỏ. Suy ra xác suất để lấy ra được 1 viên bi đỏ là \(\frac{4}{{10}} = 0,4\).

Nếu ta lấy được viên bi đỏ ở hộp thứ nhất và bỏ vào hộp thứ hai thì hộp thứ hai có 5 viên bi xanh và 5 viên bi đỏ. Suy ra xác suất để lấy được 1 viên bi đỏ là \(\frac{5}{{10}} = 0,5\).

Ta có sơ đồ hình cây sau:

Dựa vào sơ đồ hình cây, ta có:

\(P\left( A \right) = P\left( {MN} \right) = 0,16.\)

\(P\left( B \right) = P\left( {M\bar N} \right) + P\left( {\bar MN} \right) = 0,24 + 0,3 = 0,54.\)