Gieo đồng thời hai con xúc xắc cân đối và đồng chất. Gọi A là biến cố “Xuất hiện hai mặt có cùng số chấm”, B là biến cố “Tổng số chấm của hai mặt xuất hiện bằng 8” và C là biến cố “Xuất hiện ít nhất một mặt có 6 chấm”.
a) Tính \(\dfrac{P\left(A\cap B\right)}{P\left(B\right)}\) và P(A|B).
b) Tính \(\dfrac{P\left(C\cap A\right)}{P\left(A\right)}\) và P(C|A).
a) Ta dễ dàng thấy các kết quả \(\left( {3;5} \right)\); \(\left( {4;4} \right)\); \(\left( {5;3} \right)\) là có lợi cho biến cố \(B\), suy ra \(P\left( B \right) = \frac{3}{{36}} = \frac{1}{{12}}\).
Biến cố \(A \cap B\) là biến cố “Xuất hiện hai mặt cùng số chấm và tổng số chấm của hai mặt xuất hiện là 8”. Dễ dàng thấy \(\left( {4;4} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {A \cap B} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{{12}}}} = \frac{1}{3}\).
Khi biến cố \(B\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(A\). Như vậy \(P\left( {A|B} \right) = \frac{1}{3}\).
b) Ta dễ dàng thấy các kết quả \(\left( {1;1} \right)\); \(\left( {2;2} \right)\); \(\left( {3;3} \right)\); \(\left( {4;4} \right)\); \(\left( {5;5} \right)\); \(\left( {6;6} \right)\) là các kết quả có lợi cho biến cố \(A\). Suy ra \(P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\).
Biến cố \(C \cap A\) là biến cố “Xuất hiện hai mặt cùng số chấm và có ít nhất một mặt 6 chấm”. Dễ dàng thấy \(\left( {6;6} \right)\) là kết quả có lợi duy nhất của biến cố này. Vậy \(P\left( {C \cap A} \right) = \frac{1}{{36}}\). Suy ra \(\frac{{P\left( {C \cap A} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{36}}}}{{\frac{1}{6}}} = \frac{1}{6}\).
Khi biến cố \(A\) xảy ra, ta thấy chỉ có 1 kết quả có lợi cho biến cố \(C\). Như vậy \(P\left( {C|A} \right) = \frac{1}{6}\).