Quy tắc xét tính chẵn lẻ của hàm số:
Chẵn \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=f\left(-x\right)\end{matrix}\right.\)
Lẻ \(\Leftrightarrow\left\{{}\begin{matrix}x\in D\Rightarrow-x\in D\\f\left(x\right)=-f\left(-x\right)\end{matrix}\right.\)
a/ \(g=2x^4-x^2+5\)
\(x\in D=R\Rightarrow-x\in D\)
\(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)
=> hàm số chẵn
b/ \(y=x^3+3x\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)\)
\(\Rightarrow y\left(x\right)=-y\left(-x\right)\)
=> hàm số lẻ
c/ \(y=x^3+3x+1\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)+1=-x^3-3x+1\)
\(\Rightarrow\left\{{}\begin{matrix}y\left(x\right)\ne y\left(-x\right)\\y\left(x\right)\ne-y\left(-x\right)\end{matrix}\right.\)
=> hàm số ko chẵn ko lẻ
d/ \(y=x^4-3\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left(-x\right)^4-3=x^4-3=y\left(x\right)\)
=> hàm số chẵn
e/ \(y=3x^4-\left|x\right|+2\)
\(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=3\left(-x\right)^4-\left|-x\right|+2=3x^4-\left|x\right|+2=y\left(x\right)\)
=> hàm số chẵn
f/ \(x\in D=R\Rightarrow-x\in D\)
\(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+ \left|x-1\right|=y\left(x\right)\)
=> hàm số chẵn
Các câu sau làm tương tự
a/ \(g\left(-x\right)=2\left(-x\right)^4-\left(-x\right)^2+5=2x^4-x^2+5=g\left(x\right)\)
Hàm chẵn
b/ \(y\left(-x\right)=\left(-x\right)^3+3\left(-x\right)=-x^3-3x=-\left(x^3+3x\right)=-y\left(x\right)\)
Hàm lẻ
c/ \(y\left(-x\right)=-x^3-3x+1\)
Hàm ko chẵn ko lẻ
d/ \(y\left(-x\right)=x^4-3=y\left(x\right)\) hàm chẵn
e/ \(y\left(-x\right)=3x^4-\left|x\right|+2=y\left(x\right)\) hàm chẵn
f/ \(y\left(-x\right)=\left|-x-1\right|+\left|-x+1\right|=\left|x+1\right|+\left|x-1\right|=y\left(x\right)\)
Hàm chẵn
g/ \(y\left(-x\right)=\left|-x-1\right|-\left|-x+1\right|=\left|x+1\right|-\left|x-1\right|=-y\left(x\right)\)
Hàm lẻ
h/ Hàm ko chẵn ko lẻ