\(A=\dfrac{f\left(x_1\right)-f\left(x_2\right)}{x_1-x_2}=\dfrac{\dfrac{4}{x_1+1}-\dfrac{4}{x_2+1}}{x_1-x_2}\)
\(=\dfrac{4x_2+4-4x_1-4}{\left(x_1+1\right)\left(x_2+1\right)}\cdot\dfrac{1}{x_1-x_2}=\dfrac{-4}{\left(x_1+1\right)\left(x_2+1\right)}\)
Nếu \(x\in\left(-\infty;-1\right)\) thì \(\left\{{}\begin{matrix}x_1< -1\\x_2< -1\end{matrix}\right.\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)
=>A<0
=>f(x) nghịch biến trên khoảng \(\left(-\infty;-1\right)\)
Nếu \(x\in\left(-1;+\infty\right)\) thì \(\left\{{}\begin{matrix}x_1>-1\\x_2>-1\end{matrix}\right.\Leftrightarrow\left(x_1+1\right)\left(x_2+1\right)>0\)
=>A<0
=>f(x) nghịch biến trên khoảng \(\left(1;+\infty\right)\)