Câu 1: Xét dấu các biểu thức sau:
a, f(x)=\(\frac{x-1}{\left(x+3\right)\left(2x-1\right)}\)
b, f(x)=(3x-1)(x2-4)
c, f(x)=\(\frac{\left(3x-1\right)\left(5-2x\right)}{\left(x+2\right)\left(x+5\right)}\)
Câu 2: Giải các bất phương trình:
a, (x-1)(x-2) ≥ 0
b, (3-x)(x+5) ≤ 0
c, \(\frac{2}{4-x}\) ≤ 1
d, \(\frac{4-3x}{x-2}\) ≥ 3
1. Ap dụng BĐT Cô-si để tìm GTNN của các biểu thức sau
a. \(y=\frac{x}{2}+\frac{18}{x},x\ge0\)
b.\(y=\frac{x}{2}+\frac{2}{x-1},x\ge1\)
c.\(y=\frac{3x}{2}+\frac{1}{x+1},x\ge-1\)
d. \(y=\frac{x}{3}+\frac{5}{2x-1},x\ge\frac{1}{2}\)
e. y \(=\frac{x}{1-x}+\frac{5}{x},0\le x\le1\)
f. \(y=\frac{x^3+1}{x^2},x\ge0\)
g. \(y=\frac{x^2+4x+4}{x},x\ge0\)
Áp dụng BĐT Cô-si để tìm Max
a. \(y=\left(x+3\right)\left(5-x\right),\left(-3\le x\le5\right)\)
b. \(y=x\left(6-x\right)\left(0\le x\le6\right)\)
c. \(y=\left(x+3\right)\left(5-2x\right)\left(-3\le x\le\frac{5}{2}\right)\)
d. \(y=\left(2x+5\right)\left(5-2x\right)\left(-\frac{5}{2}\le x\le5\right)\)
e. \(y=\left(6x+3\right)\left(5-2x\right)\left(-\frac{1}{2}\le x\le\frac{5}{2}\right)\)
f. \(y=\frac{x}{x^2+2},x\ge0\)
g. \(y=\frac{x^2}{\left(x^2+2\right)^3}\)
giải cac bất phương trình sau:
1) 6x2-x-1<0
2) -2x2+7x-6>0
3) 25x2-30x+9>0
4) -3x2+x-5<0
5) 2x2-4x+7≥0
6) 8x2+23x+14≤0
7) x2-2x+3>0
8) 6x2-x-2≥0
9) \(\frac{1}{3}\)x2+3x+6<0
10) x2+9>6x
giup em với mng!!!
Cho \(\sin x+\cos x=m\). Tính theo m các biểu thức sau:
1) \(A=\sin^2x+\cos^2x\)
2) \(B=\sin^3x+\cos^3x\)
3) \(C=\sin^4x+\cos^4x\)
4) \(D=\sin^6x+\cos^6x\)
TÌM GTLN-GTNN (NẾU CÓ) CỦA HÀM SỐ SAU
a) f(x) = x2 +\(\frac{16}{x^2}\) (x \(\ne\)0)
b) f(x) = x + 2 + \(\frac{16}{x+2}\) (∀x > 2)
c) f(x) = x - 1 + \(\frac{25}{x+3}\) (∀x > -3)
d) f(x) = \(\frac{x^2+3x+9}{x}\) (∀x > 0)
GIÚP MIK VỚI
Các thầy cô giúp dùm em với ạ
Cho 2 số không âm x, y thỏa mãn x2 + y2 = x+y+xy. Biết rằng tập giá trị của biểu thức S = x+ y là [m ; n]. Tính giá trị của biểu thức m2+n2
A. 16. B. 13 C. 25 D. 34
Cho các số x, y thỏa 2(x^2+y^2)=xy-6x+9y-11
Tìm GTLN của P = (x+1)^4+(y-2)^4
Các thầy cô, anh chị giải giúp em.
Bài 1 : Tìm GTNN dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 4x^2 -4x -2
b, x^4 + 4x^2+1
c, 2x^2 -20x -7
Bài 2 : Tìm GTLN của các biểu thức : dựa vào tính chất ( a + b)^2 = a^2 + 2ab+b^2
a, 3/4 -3(x-2/5)^2
b,-x^2 + 4x+5
c, -9x^2-6x-2
d, -x^2 + 5x+1/2
e, -3x^2 -21x+2