Xác định hàm số bậc nhất y = ax + b trong mỗi trường hợp sau:
a) Đồ thị của hàm số song song với đt y = 3x + 1 và đi qua A (2; 5).
b) Đồ thị của hàm số vuông góc với đt y = x – 5 và cắt Ox tại điểm có hoành độ bằng -2.
c) Đồ thị hàm số đi qua A (-1; 2) và B (2; -3).
d) Đồ thị hàm số cắt (P): y = x² tại 2 điểm A và B có hoành độ lần lượt là -1 và 2.
a/ \(\left\{{}\begin{matrix}a=3\\2a+b=5\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=3\\b=-1\end{matrix}\right.\) \(\Rightarrow y=3x-1\)
b/ \(\left\{{}\begin{matrix}a.1=-1\\-2a+b=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-1\\b=-2\end{matrix}\right.\) \(\Rightarrow y=-x-2\)
c/ \(\left\{{}\begin{matrix}-a+b=2\\2a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-\frac{5}{3}\\b=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow y=-\frac{5}{3}x+\frac{1}{3}\)
d/ Thay \(x=-1;2\) vào pt (P) ta được tọa độ \(\left\{{}\begin{matrix}A\left(-1;1\right)\\B\left(2;4\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}-a+b=1\\2a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow y=x+2\)