\(x^3+2x-3=0\)
\(\Leftrightarrow\left(x^3-x^2\right)+\left(x^2-x\right)+\left(3x-3\right)=0\)
\(\Leftrightarrow x^2\left(x-1\right)+x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+3\right)=0\)
Ta có: \(x^2+x+3=\left[x^2+2.x.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2\right]+3-\left(\dfrac{1}{2}\right)^2\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\forall x\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}>0\forall x\) (1)
Mà \(\left(x-1\right)\left(x^2+x+3\right)=0\) từ (1) \(\Rightarrow x-1=0\Leftrightarrow x=1\)
Vậy x = 1
\(x^3-x+3x-3=0\)
\(\Leftrightarrow x\left(x^2-1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)+3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+1\right)+3\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x^2+x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}=0\left(vl\right)\end{matrix}\right.\)
vậy \(S=\left\{1\right\}\)