Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Heo Sun

\(x^2+y^2=2\)

tìm MAX của \(2\left(x^3+y^3\right)-3xy\)

Akai Haruma
9 tháng 11 2017 lúc 22:34

Lời giải:

Đặt biểu thức là $A$

Ta có:

\(A=2(x^3+y^3)-3xy\)

\(=2(x+y)(x^2-xy+y^2)-3xy\)

\(=2(x+y)(2-xy)-2xy\)

Có: \(xy=\frac{(x+y)^2-(x^2+y^2)}{2}=\frac{(x+y)^2-2}{2}\)

Khi đó đặt \(x+y=a\Rightarrow A=2a(2-\frac{a^2-2}{2})-3.\frac{a^2-2}{2}\)

\(\Leftrightarrow A=6a-a^3-\frac{3}{2}a^2+3\)

Thấy rằng \((x-y)^2\geq 0\Leftrightarrow x^2+y^2\geq 2xy\)

\(\Leftrightarrow 2(x^2+y^2)\geq (x+y)^2\Leftrightarrow a^2\leq 4\Leftrightarrow -2\leq a\leq 2\)

Đến đây, ta có thể xét đạo hàm, lập bảng biến thiên để tìm max với \(a\in [-2;2]\)

Hoặc biến đổi theo cách sau:

\(2A=12a-2a^3-3a^2+6\)

\(2A=2(3a-a^3-2)+(6a-3a^2-3)+13\)

\(=-2(a-1)^2(a+2)-3(a-1)^2+13\)

\(=-(a-1)^2(2a+7)+13\)

Có: \(\left\{\begin{matrix} (a-1)^2\geq 0\\ a\geq -2\Rightarrow -(2a+7)< 0\end{matrix}\right.\Rightarrow -(a-1)^2(2a+7)\leq 0\)

\(\Rightarrow 2A\leq 13\Leftrightarrow A\leq \frac{13}{2}\)

Vậy \(A_{\max}=\frac{13}{2}\Leftrightarrow a=1\)

Bình luận (0)

Các câu hỏi tương tự
Nguyễn Thành Trung
Xem chi tiết
cha gong-won
Xem chi tiết
Tâm Cao
Xem chi tiết
Phuong Phuong
Xem chi tiết
tiên lê
Xem chi tiết
Hỏi Làm Giề
Xem chi tiết
poppy Trang
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Thanh Giang
Xem chi tiết