Tìm x
a)(2x+1)2-4(x+2)2 =9
b)(3x-1)2 +2(x+3)2 +11(x+1)(1-x)=6
c)(x+1)3 - x2 (x+3)=2
d)(x-2)3 -x(x+1)(x-1)+6x2 =5
e)(x-3)(x2 +3x +9)-x(x+4)(x-4)=5
g)(x-2)3 -(x+5)(x2 -5x+25)+6x2 =11
7) x4+2x3-2x2+2x-3=0
8) (x-1)( x2+5x-2)-x3+1=0
9) x2+(x+2)(11x-7)=4
(GIẢI PHƯƠNG TRÌNH)
A=( x+2 / x-2 - 4 x2 /4-x2 - x-2 /x+2 ) / x3 +x2 +2x
a, rút gọn biểu thức A
b, tính giá trị của A khi giá trị tuyệt đối của x+3 =5
c, tính các giá trị của x để cho biểu thức A nhận giá trị nguyên
dùng định nghĩa hai phân thức bằng nhau chứng tỏ rằng :
a,\(\dfrac{x2y2}{5}\)=\(\dfrac{7x3y4}{35xy}\)
b,\(\dfrac{x3-4x}{10-5x}\)=\(\dfrac{-X2-2X}{5}\)
C,\(\dfrac{x+2}{X-1}\)=\(\dfrac{\left(x+2\right)\left(x+1\right)}{x2-1}\)
d,\(\dfrac{x2-x-2}{x+1}\)=\(\dfrac{x2-3x+2}{x-1}\)
e,\(\dfrac{x3+8}{x2-2x+4}\)=x+2
Bài 1: Tìm GTNN của biểu thức sau:
a) A= 2x2 + x
b) B = x2 + 2x + y2- 4y + 6
c) C = 4x2 + 4x + 9y2 - 6y - 5
d) D = (2 + x)( x + 4) - ( x - 1)( x + 3 )2
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
. Khai triển luỹ thừa( x – 2)2
2. Thực hiện phép tính:
a) 2x2 .( 4x – 5x3) + 10x5 – 5x3
b) (x + 2)( x2 – 2x + 4) + (x – 4)(x+2)
Bài 2 (2đ) Tìm x, biết:
a)x2 – 2x = 0 b) (3x – 1)2 – 16= 0
Bài 3 (2,5đ) Phân tích đa thức sau thành nhân tử:
a) 3x2 – 30x + 75
b) xy – x2 – x + y
c) x2 – 7x – 8
Bài 4 (1,5đ) Làm tính chia:
a) (12x3y3 – 2x2y3 + 6x2y4) : 4x2y3
b) (2x3 – 7x2 + 12x – 9): (2x – 3)
Bài 5 (1,0đ)
a) Tìm đa thức f(x) = x2 + ax + b , biết khi chia f(x) cho x + 1 thì dư là 6, còn khi chia cho x – 2 thì dư là 3
b) Tìm giá trị nhỏ nhất của biểu thức A = x.(x – 3)
B1: A=\(\left(\dfrac{2-3x}{x^2+2x-3}-\dfrac{x+3}{1-x}-\dfrac{x+1}{x+3}\right):\dfrac{3x+12}{x^3-1}\)
a) Rút gọn
b) Tìm x thuộc Z để A nguyên
c) Tính A với x=-2; x=-3
d) Tìm x dể A=1
B2: Phân tích thành nhân tử
a) x2-2xy-4+y2
b) x2-4x+3
c) 9x2(x-y)-x+y
B3: Rút gọn
a) (x-2)3-(x+2)3-(x-1)(x2+x+1)
b) (5x+3y)(5x-3y)+(4x-3y)2
B4: P(x)=x4+x3+mx2-3x+5
a) Khi m=4, thực hiện phép chia P(x) cho x2-x+1
b) Tìm m để P(x)⋮(x-1)
Câu 1: (1,5 điểm) Phân tích các đa thức sau thành nhân tử:
a). x3 – 2x2 + x b) -2x2 – 7x + 9 c) –x2 + 6x + 6y + y2
Câu 2: (1,5 điểm). Cho biểu thức: A = (3x – x2) / (x3 – x2 – 6x)
a). Rút gọn biểu thức A.
b) Tìm giá trị nguyên của x để biểu thức A có giá trị là một số nguyên.
Câu 3: (2 điểm) Tìm x, biết:
a) x2 – 5x = 0
b) n3 + xn2 – 4 chia hết cho n2 + 4n + 4 với mọi n ≠ -2
c) (1- 2x)(1 + 2x) – x(x + 2)(x – 2) = 0