Giải phương trình:
a) \(x + \sqrt{9 -x^2} = 3 + 5x\sqrt{9 - x^2}\)
b) \(3\sqrt{1 - x^2} = 5\sqrt{1 + x} - 4\sqrt{1 - x} + x + 6\)
c) \(x + 2 + 4\sqrt{x^2 - x + 2} = 2\sqrt{6x^2 - x + 14}\)
Giair phương trình:
1) \(\sqrt[5]{32-x^2}-\sqrt[5]{1-x^2}=4\)
2) \(\sqrt{x}+\sqrt[4]{20-x}=4\)
3) \(x^3+1=2\sqrt{3x-1}\)
4) \(\sqrt[3]{x-1}+3=\sqrt[4]{82-x}\)
5)
\(a.\left(x+3\sqrt{x}+2\right)\left(x+9\sqrt{x}+18\right)=168x\)
\(b.\sqrt{5x^2+14x+9}-\sqrt{x^2-x-20}=5\sqrt{x+1}\)
GPT:
a,\(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
b,\(x-7\sqrt{x-3}+9=0\)
1.\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
2.\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\)
3.\(\left(1-\dfrac{4}{\sqrt{x}+1}+\dfrac{1}{x-1}\right):\dfrac{x-2\sqrt{x}}{x-1}\)
4.\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)
P=x3 +y3 -3(x+y)+1996
Tính giá trị của P ,biết
y=∛9+4√5 +∛9-4√5
x=∛3+2√2 +∛3-2√2
Cho A=\(\dfrac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}+1}{3-\sqrt{x}}\)
Rút gọn A
1.Tìm x
a)\(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{(x-1)(x+3)}=4-2x\)
b)\(\sqrt{3x-2}+\sqrt{x-1}=4x-9+2\sqrt{3x^2-5x+2}\)
Rút gọn biểu thức
A= \(\dfrac{x+3+2\sqrt{x^2-9}}{2x-6+\sqrt{x^2-9}}\)
A=\(\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3\left(\sqrt{x}+3\right)}{x-9}\right)\)\(:\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)(với \(x\ge0;x\ne9\))
a) Rút gọn A
b) Tìm x để A<\(-\)1