a) thay \(m=2\) vào ta có \(\left(1\right)\Leftrightarrow x^2+3x+2=0\)
ta có : \(a-b+c=0\) \(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=-1;x_2=\dfrac{-c}{a}=-2\)
b) ta có : \(\Delta=\left(2m-1\right)^2-8\left(m-1\right)=4m^2-4m+1-8m+8\)
\(=4m^2-12m+9=\left(2m-3\right)^2\ge0\forall m\)
\(\Rightarrow\) phương trình luôn có nghiệm với mọi \(m\) (đpcm)
c) theo hệ thức vi ét ta có : \(\left\{{}\begin{matrix}x_1+x_2=1-2m\\x_1x_2=2m-2\end{matrix}\right.\)
ta có : \(x_1\left(x_2-5\right)+x_2\left(x_1-5\right)=33\)
\(\Leftrightarrow x_1x_2-5x_1+x_1x_2-5x_2=33\Leftrightarrow2x_1x_2-5\left(x_1+x_2\right)=33\)
\(\Leftrightarrow2\left(2m-2\right)-5\left(1-2m\right)=33\Leftrightarrow14m-9=33\)
\(\Leftrightarrow m=3\) vậy \(m=3\)