=>\(\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
=>\(x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)
=>x=1
=>\(\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
=>\(x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2=27\)
=>x=1
d) (5x+3) ( 4x-1) +(10x-7) (-2x+3) =27
e)(8x-5) (3x+2) -(12x+7) (2x-1)=17
f) (5x+9) (6x-1) -(2x-3)( 15z+1) = -190
g) 6x(5x+3) + 3x(1-10x) =7
h) (3x-3) (5 -21x) +(7x+4)(9x-5) =44\
i) (x+1)(x+2)(x-5)-x2 (x+8)=27
rút gọn biểu thức: (27^10-5.81^4.3^12+4.9^8.3^8):41.3^24
giải phương trình: 4x^2-9-(2x+3)(2x-1)=0
x^3+x^2-4x=4
x^2(x^2+4)-x^2-4=0
(3x-3)^2=(x+5)^2
(2x-3)^2==(x+5)^2
x^2(x-1)-(4x^2+8x-4)=0
Bài 1: Phân tích các đa thức sau thành nhân tử
a. 1 - 4x2
b. 8 - 27x3
c. 27 + 27x + 9x 2 + x3
d. 2x3 + 4x2 + 2x
e. x2 - 5x - y2 + 5y
f. x2 - 6x + 9 - y2
g. 10x (x - y) - 6y(y - x)
h. x2 - 4x - 5
i. x4 - y4
Bài 2: Tìm x, biết
a. 5(x - 2) = x - 2
b. 3(x - 5) = 5 - x
c. (x +2)2 - (x+ 2) (x - 2) = 0
Bài 3: Tìm giá trị nhỏ nhất của biểu thức
a. A = x2 - 6x + 11
b. B = 4x2 - 20x + 101
c. C = -x2 - 4xy + 5y2 + 10x - 22y + 28
a) -3x(x+2)²+(x+3)(x-1)(x+1)-(2x-5)²
b) 2(x-3)(x+3)(x+2)-(x-1)(x²-3)-5x(x+4)²-(x-5)²
c) 2x (x - 4)²(x + 5)(x - 2)(x + 2)+2(x + 5)² - (x - 1)²
d) (x + 5)² - 4 x (2 x + 3)²(2 x - 1)(x + 3)(x- 3)
e) -2 x( 3 x + 2)(3 x -2)+ 5( x + 2)²- (x -1) (2 x - 1)(2x +1)
f) (7 x - 8)(7 x + 8) - 10(2x + 3)² + 5 x (3x - 2)² - 4 (x - 5)².
g) (x²- 3)(x² + 3)- 5x²(x + 1) -(x² - 3x) (x² - 2x) + 4x(x + 2)².
Bài 7: Giải các phương trình sau :
a) \(\frac{x+1}{9}+\frac{x+2}{8}=\frac{x+3}{7}+\frac{x+4}{6}\)
b) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
c) \(\frac{2-x}{2002}-1=\frac{1-x}{2003}-\frac{x}{2004}\)
d) \(\frac{x^2-10x-29}{1971}+\frac{x^2-10x-27}{1973}=\frac{x^2-10x-1971}{29}+\frac{x^2-10x-1973}{27}\)
1.\(\left(\dfrac{x+2}{98}+1\right)+\left(\dfrac{x+3}{97}+1\right)=\left(\dfrac{x+4}{96}+1\right)+\left(\dfrac{x+5}{95}+1\right)\)
2.\(\dfrac{x^2-10x-29}{1971}+\dfrac{x^2-10x-27}{1973}=\dfrac{x^2-10x-1971}{29}+\dfrac{x^2-10x-1973}{27}\)
Bài 2: Viết các biểu thức sau dưới dạng bình phương một tổng a) x² + 6x + 9 b) x² + x + 1 Bài 3: Rút gọn biểu thức: a) (x +y)2+(x - y) Bài 4: Tìm x biết a) (2x + 1)²- 4(x + 2)²=9 b) (x+3)²-(x-4)( x + 8) = 1 Bài 5: Tính nhẩm: a) 19. 21 b) 29.31 c) 2xy² + x²y + 1 b)2(x - y)(x + y) +(x - y)²+ (x + y)² c) 3(x + 2)²+ (2x - 1)²- 7(x + 3)(x - 3) = 36 c) 39. 41: Bài 6: Chứng minh rằng các biểu thức sau luôn dương với mọi giá trị của biển x a) 9x² - 6x +2 b) x² + x + 1 Bài 7: Tìm GTNN của: a)A=x-3x+5 Bài 8: Tìm GTLNcủa: a) A = 4 - x² + 2x Bài 9: Tính giá trị của biểu thức A = x³+ 12x²+ 48x + 64 tai x = 6 C=x+9x+27x + 27 tại x= - 103 c) 2x² + 2x + 1. b) B = (2x - 1)² + (x + 2)² b) B = 4x - x² B=x −6x + 12x – 8 tại x = 22 D=x³15x² + 75x - 125 tai x = 25 Bài 10.Tìm x biết: a) (x - 3)(x + 3x +9)+x(x + 2)2 - x)=1 b)(x+1)- (x - 1) - 6(x - 1}} = Bài 11: Rút gọn: a) (x - 2) - x(x + 1)(x - 1) + 6x(x - 3) b)(x - 2)(x - 2x+4)(x+2)(x+2x+
Bài 5: Giải các phương trình sau :
a) \(\frac{3x-1-\frac{x-1}{2}}{3}-\frac{2x+\frac{1-2x}{3}}{2}=\frac{\frac{3x-1}{2}-6}{5}\)
b) \(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}+\frac{x-23}{27}\)
c) \(\frac{x+1}{2004}+\frac{x+2}{2003}=\frac{x+3}{2002}+\frac{x+4}{2001}\)
d) \(\frac{x-45}{55}+\frac{x-47}{53}=\frac{x-55}{45}+\frac{x-53}{47}\)
e) \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
Tìm x:
\(\dfrac{x-5}{100}+\dfrac{x-4}{100}+\dfrac{x-3}{100}=\dfrac{x-100}{5}+\dfrac{x-101}{4}+\dfrac{x-102}{3}\)
\(\dfrac{29-x}{21}+\dfrac{27-x}{23}+\dfrac{25-x}{25}+\dfrac{23-x}{27}+\dfrac{21-x}{29}=-5\)
\(\dfrac{2-x}{2001}-1=\dfrac{1-x}{2002}-\dfrac{x}{2003}\)