\((x+1)+(x+2)+(x+3)+(x+4)+...+(x+100) = 5150 100* x + (1 + 2 + 3 + 4 + ... + 100) = 5150 100* x + 5050 = 5150 100 * x = 100 x = 100 : 100 x = 1 \)
(x+1)+(x+2)+(x+3)+(x+4)+...+(x+100) = 5150
100* x + (1 + 2 + 3 + 4 + ... + 100) = 5150
100* x + 5050 = 5150
100 * x = 100
x = 100 : 100
x = 1
x=1nha
ta co:1+2+3+4+5+...+n
=n.(n+1)/2
nen 1+2+3+4+...+100
=100.101/2=5050
pt ban dau <=>100x+5050=5150
<=>100x=100
<=>x=1
(x+1)+(x+2)+(x+3)+...+(x+100)=5150
(x+x+x+...+x)+(1+2+3+...+100)=5150
100.x+(1+2+3+...+100)=5150
Ta xét :
A=1+2+3+...+100
A=100+99+98+...+1
⇒A+A=(1+100)+(2+99)+(3+98)+...+(100+1)
2A=101+101+101+...+101(có 100 số101)
2A=101 . 100
A= 101 . 100 :2
A= 10100:2
A= 5050
⇒ 100.x+(1+2+3+...+100)=5150
100.x + 5050 = 5150
100.x = 5150-5050
100.x=100
x=100:100
x=1
Vậy x = 1