Ta có: \(\sqrt{x-2}-\sqrt{9x-18}+4=0\)
\(\Leftrightarrow x-2=4\)
hay x=6
\(\sqrt{x-2}-\sqrt{9x-18}+4=0\) ĐKXĐ: \(x\ge2\)
<=> \(\sqrt{x-2}=\sqrt{9x-18}-4\)
<=> \(x-2=\left(\sqrt{9x-18}-4\right)^2\)
<=> \(x-2=\left(9x-18\right)-8\sqrt{9x-18}+16\)
<=> \(x-2-9x+18-16=-8\sqrt{9x-18}\)
<=> \(-8x=-8\sqrt{9x-18}\)
<=> \(\sqrt{9x-18}=\dfrac{-8x}{-8}\)
<=> \(\sqrt{9x-18}=x\)
<=> 9x - 18 = x2
<=> x2 - 9x + 18 = 0
<=> x2 - 3x - 6x + 18 = 0
<=> x(x - 3) - 6(x - 3) = 0
<=> (x - 6)(x - 3) = 0
<=> \(\left[{}\begin{matrix}x-6=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(tm\right)\\x=3\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm của PT là S = \(\left\{3;6\right\}\)