Đặt \(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}=k\)\(\Rightarrow\begin{cases}x=5k+1\\y=3k+2\\z=2k+2\end{cases}\)
Theo đề bài: 3x-5y+6z <=> 3(5k+1)-5(3k+2)+6(2k+2)=9
<=>15k+3-15k-10+12k+12=9
<=>12k+5=9
<=>12k=4
<=>k=\(\frac{4}{12}=\frac{1}{3}\)
=>\(\Rightarrow\begin{cases}x=5.\frac{1}{3}+1=\frac{8}{3}\\y=3.\frac{1}{3}+2=3\\z=2.\frac{1}{3}+2=\frac{8}{3}\end{cases}\)
Vậy ............
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\) = \(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\)
= \(\frac{3x-3-\left(5y-10\right)+6z-12}{15-15+12}\) = \(\frac{3x-3-5y+10+6x-12}{12}\)
= \(\frac{9-5}{12}\) = \(\frac{4}{12}\) = \(\frac{1}{3}\)
=> \(\left[\begin{array}{nghiempt}x-1=\frac{5}{3}\\y-2=1\\z-2=\frac{2}{3}\end{array}\right.\) => \(\left[\begin{array}{nghiempt}x=\frac{8}{3}\\y=3\\z=\frac{8}{3}\end{array}\right.\)
Vậy x = \(\frac{8}{3}\) ; y = 3 ; z = \(\frac{8}{3}\)