the sum of the five possible is 3 times on of them , 7 times another and 5 times a third . The sum of the other two number is 34 . What is the largest of these five numbers ?
the sum of the digits of a certain two - digits number is 11. when you reverse its digits you decrease the number by 9
Given three consecutive even natural numbers, which have the product of last two numbers is 80 greater than the product of first two numbers.
Find the largest number.
1) ABC is a triangle where M is the midpoint of segment BC.
MD and ME are two bisectors of triangles AMB and AMC respectively.
If AM= m; BC = a . Then DE = ???
2)\(\dfrac{1}{\left(x+29\right)^2}+\dfrac{1}{\left(x+30\right)^2}=\dfrac{5}{4}\)
What is the product of all real solutions to the equation above?
3) The sum of all possible natural numbers n such that
\(n^2+n+1589\) is a perfect square is.....
4) Given that x is a positive integer such that x and x+99 are perfect squares
The sum of integer x is ...
5)The operation @ on two numbers produces a number equal to their sum minus 2. The value of
(...((1@2)@3....@2017)
6) Given f(x)=\(\dfrac{x^2}{2x-2x^2-1}\)
=> \(f\left(\dfrac{1}{2016}\right)+f\left(\dfrac{2}{2016}\right)+f\left(\dfrac{3}{2016}\right)+...+f\left(\dfrac{2016}{2016}\right)\)
Các bn giúp mk vs >>> tks nha!!!
What is the sum of all digits of the page numbers of a 76-page book?
Question 1: Find the highest common factor of 147x and 98y if HCF(x;y)=1.
Question 2: In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is______
Question 3: A pattern of triangle is made from matches shown as follows:
If there 2017 matches used, how many triangles has been formed?
P/s: Please help me! If possible, write the detail answer! Thanks for your help!!!
in a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is
Let a, b and c be positive integers. The sum of 160 and the square of a is equal the sum of 5 and the square of b. The sum of 320 and the square of a is equal to the sum of 5 and the square of c, a is
In a magic triangle, each of the six whole numbers 10; 11; 12; 13; 14; 15 is placed in one of the circles so that the sum, S, of the three numbers on each side of the triangle is the same. The largest possible value for S is