Với x>1
\(\Rightarrow P=\dfrac{x^2}{x-1}\)
\(\Rightarrow P-4=\dfrac{x^2-4x+4}{x-1}\)
\(\Rightarrow P-4=\dfrac{\left(x-2\right)^2}{x-1}\ge0\)
\(\Rightarrow P\ge4\)
Vậy MINP=4<=>x=2
\(P=\dfrac{x^2}{x-1}=\dfrac{x^2-4x+4}{x-1}+\dfrac{\left(4x-4\right)}{x-1}\\ =\dfrac{\left(x-2\right)^2}{x-1}+4\ge4\)
Dấu "=" xảy ra khi:
\(\dfrac{\left(x-2\right)^2}{x-1}=0\\ \Leftrightarrow x=2\)