Bài 1 : Rút gọn biểu thức sau :
\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
Bài 2 : Chứng minh đẳng thức sau :
\(\sqrt{8+2\sqrt{10+2\sqrt{5}}}.\sqrt{8-2\sqrt{10+2\sqrt{5}}}=2\sqrt{5}-2\)
Bài 3 : Cho biểu thức E = \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x}+1}+4\sqrt{x}\right):\left(\sqrt{x}-\frac{1}{\sqrt{x}}\right)\)
a) Rút gọn biẻu thức E
b) Tính giá trị của E khi x = \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}\)
Cho a,b,c là ba số dương thỏa mãn ab+bc+ca=1
Tính tổng:S=\(a.\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b.\sqrt{\dfrac{\left(1+c^2\right)\left(1+a^2\right)}{1+b^2}}+c.\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Tính :
a) \(\sqrt{3\sqrt{2}+2\sqrt{3}}.\sqrt{3\sqrt{2}-2\sqrt{3}}\)
b) \(\left(1-\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
c) \(\left(5+4\sqrt{2}\right)\left(3+2\sqrt{1+\sqrt{2}}\right)\left(3-2\sqrt{1+\sqrt{2}}\right)\)
rút gọn hoạc tính giá trị các biểu thức sau
1)1+\(\sqrt{\dfrac{\left(x-1\right)^2}{x-1}}\)
2)\(\sqrt{\left(x-2\right)^2}+\dfrac{x-2}{\sqrt{\left(x-2\right)^2}}\)
3)\(\sqrt{m}-\sqrt{m-2\sqrt{m}+1}\)
Chứng minh: \(2\sqrt{2}\left(\sqrt{3}-2\right)+\left(1+2\sqrt{2}\right)^2-2\sqrt{6}=9\)
Thực hiện phép tính.
a) \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\sqrt{\dfrac{1}{ab}}}\right)\sqrt{ab}\)
b) \(\left(\dfrac{am}{b}\sqrt{\dfrac{n}{m}}-\dfrac{ab}{n}\sqrt{mn}+\dfrac{a^2}{b^2}\sqrt{\dfrac{m}{n}}\right).a^2b^2.\sqrt{\dfrac{n}{m}}\)
Giải chi tiết ra hộ mình với ạ, mình cảm ơn ạ.
\(\sqrt{4+2\sqrt[]{}3}\)
\(\left(\sqrt{ }7+\sqrt{ }3\right)^2\)
\(\left(\sqrt{ }5-\sqrt{ }3+1\right)\left(\sqrt{ }5-1\right)\)
\(\left(5\sqrt{ }3-2\sqrt{ }7\right)\left(5\sqrt{ }3+2\sqrt{ }7\right)\)
tính các biểu thức sau
bài 1 : rút gọn các biểu thức sau .
a, \(\sqrt{4\left(a-3\right)^2}+2\sqrt{a^2+4a+4}\left(a< -2\right)\)
b, \(\sqrt{\dfrac{\left(x-2\right)^2}{\left(3-2\right)^2}}+\dfrac{x^2-1}{x-3}\left(x< 3\right)\)
c, \(4x-\sqrt{8}+\dfrac{\sqrt{x^3+2x^2}}{\sqrt{x+2}}\)
bài 2 thực hiện phép tính :\
a, \(\sqrt{8-\sqrt[2]{7}}\times\sqrt{8+\sqrt[2]{7}}\)
b, \(\sqrt{4+\sqrt{8}+}+\sqrt{2}+\sqrt{2+\sqrt{2}}\times\sqrt{2-\sqrt{2+2}}\)
c, \(\left(4+\sqrt{15}\right)\times\sqrt{10}-\sqrt{6}\times\sqrt{4-\sqrt{15}}\)
d, \(\left(2+\sqrt{3}\right)^2-\left(2-\sqrt{3}\right)\times\left(2+\sqrt{3}\right)\)
A)\(\left(3-2\sqrt{2}\right).\left(3+2\sqrt{2}\right)\) B) \(\sqrt{\left(\sqrt{3}-2\right)}^2-\sqrt{\left(\sqrt{3}+2\right)}^2\) C)\(\sqrt{3-2\sqrt[]{2}}-\sqrt{3+2\sqrt{2}}\)
D)\(\left(1+\sqrt{3}-\sqrt{2}\right).\left(1+\sqrt{3}+2\right)\)
E) \(\left(\sqrt{3-\sqrt{5}}+\sqrt{3+\sqrt{5}}\right)^2\) F)\(\sqrt{15-\sqrt{216}}+\sqrt{33-12\sqrt{6}}\)
H)\(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)