Với \(a,b>0.\) Chứng minh: \(a+\frac{b}{\left(a-b\right)\left(b+1\right)^2}\ge3\)
cho a,b,c . chứng minh \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge3\left(a+b+c\right)^2\)
Cho a, b, c > 0. Chứng minh: \(\left(a+\dfrac{1}{b}-1\right)\left(b+\dfrac{1}{c}-1\right)+\left(b+\dfrac{1}{c}-1\right)\left(c+\dfrac{1}{a}-1\right)+\left(c+\dfrac{1}{a}-1\right)\left(a+\dfrac{1}{b}-1\right)\ge3\)
Chứng minh: \(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}+\frac{\left(a+b+c\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\) với mọi a,b,c >0
Chứng minh rằng: \(\left(a+\frac{1}{b}\right).\left(b+\frac{1}{c}\right).\left(c+\frac{1}{a}\right)\ge\left(\frac{10}{3}\right)^2\)với a,b,c >0 và a+b+c=1.
cho \(a,b,c>\frac{1}{2}\) và thỏa mãn \(a+b+c=3\).Chứng minh rằng
\(\frac{a^2}{\sqrt{5-2\left(b+c\right)}}+\frac{b^2}{\sqrt{5-2\left(a+c\right)}}+\frac{c^2}{\sqrt{5-2\left(a+b\right)}}\ge3\)
Cho a,b,c>0 , chứng minh rằng:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
1) Cho a, b, c > 0. CMR: \(a^2+b^2+c^2+abc+5\ge3\left(a+b+c\right)\)
2) Cho a, b, c > 0, đặt \(x=a+\frac{1}{b}\), \(y=b+\frac{1}{c}\), \(z=c+\frac{1}{a}\). Chứng minh rằng: \(xy+yz+zx\ge2\left(x+y+z\right)\)
3) Cho các số dương x, y, z thỏa mãn xyz = 1. Chứng minh rằng: \(x^2+y^2+z^2+x+y+z\ge2\left(xy+yz+zx\right)\)
(2) Bài 1: Với \(\forall\) a>1.CMR: \(a+\frac{1}{a-1}\ge3\)
(3)Bài 2:Với \(\forall\) a,b >0 .CMR: \(\frac{a^2+2}{\sqrt{a^2+1}}\ge2\)
(5) Bài 3: Với \(\forall\) a>b>0. CMR: \(a+\frac{4}{\left(a+b\right)\left(b+1\right)^2}\ge3\)