\(\Rightarrow2B=8+2^3+2^4+...+2^{21}\\ \Rightarrow2B-B=2^{21}+8-4-2^2=2^{21}\)
\(\Rightarrow B=2^2+2^2+2^3+2^4+...+2^{20}\)
\(\Rightarrow B=2^3+2^3+2^4+...+2^{20}\)
\(\Rightarrow B=2^4+2^4+...+2^{20}\)
\(...........\)
\(\Rightarrow B=2^{21}\)
B=2\(^1\)+2\(^{^{ }2}\)+2\(^3\)+2\(^4\)+..........\(2^{20}\)
2B= 2.(2\(^1\)+\(2^2\)+\(2^3\)\(2^4\)+.......\(2^{20}\))
2B=2\(^2\)+\(2^3\)+\(2^4\)+.....\(2^{20}\)+2\(^{21}\)
2B-B=2\(^{21}\)-2\(^1\)
B=\(2^{21}\)-2