Cho (O;R) và điểm A nằm ngoài đường tròn (O). Qua A vẽ tiếp tuyến AB tiếp xúc với đường tròn (O) tại B. Vẽ một đường thẳng qua A cắt đường tròn tại hai điểm M và N ( M nằm giữa A và N). Qua M kẻ đường thẳng song song với AB cắt BN tại E. Gọi I là trung điểm của ME. Vẽ dây BQ của đường tròn (O) sao cho BQ đi qua điểm I
a) Chứng minh hai tam giác BMI và tam giác BQM đồng dạng
b)Chứng minh tứ giác QIEN nội tiếp
c) Chứng minh BM.QN=BN.MQ
Cho đường tròn(O;R) và đường thẳng (d) không qua O cắt đường tròn tại hai điểm A và B.Từ một điểm M trên (d)(M nằm ngoài đường tròn (O) và A nằm giữa B và M),vẽ hai tiếp tuyến MC,MD của đường tròn (O)(C, D ∈ (O)).Gọi I là trung điểm của AB, tia IO cắt MD tại K
a)Chứng minh 5 điểm:M, C, I, O, D cùng thuộc 1 đường tròn
b)Chứng minh:KD.KM=KO.KI
c)Một đường thẳng đi qua O và song song với CD cắt các tia MC,MD lần lượt tại E,F.Xác định vị trí của điểm M trên đường thẳng (d) sao cho diện tích △MEF đạt giá trị nhỏ nhất.
cho đường tròn (O) và điểm A nằm ngoài đường tròn. vẽ tiếp tuyến AM,AN với đường tròn O (M,N thuộc O). qua A vẽ một đường thẳng cắt đường tròn O tại hai điểm B,C phân biệt (B nằm giữa A và C). gọi H là trung điểm của đoạn BC
a.cm tứ giác AMHN nội tiếp đường tròn
b.cm AN\(^2\)=AB.AC
Cho đường tròn tâm O và điểm M nằm ngoài đường tròn đó. Qua M kẻ các tiếp tuyến MA, MB với đường tròn (A, B là tiếp điểm). Đường thẳng (d) thay đổi đi qua M, không đi qua O và luôn cắt đường tròn tại hai điểm phân biệt C và D (C nằm giữa M và D).
a) Chứng minh AMBO là tứ giác nội tiếp.
b) Chứng minh MC.MD=MA\(^2\)
Các bạn giúp mình bài này với
Từ điểm M nằm ngoài đường tròn(O;R) vẽ các tiếp tuyến MA,MB(A,B là các tiếp điểm).
a)Chứng minh bốn điểm M,A,O,B cùng nằm trên một đường tròn
b)Vẽ cát tuyến MCD không đi qua tâm O của đường tròn đó sao cho điểm C nằm giữa hai điểm M và D. Tiếp tuyến tại điểm C và điểm D của đường tròn (O) cắt nhau tại điểm N. Gọi H là giao điểm của AB và MO,K là giao điểm của CD và ON.Chứng minh OH.OM=OK.ON=R^2
c)Chứng minh ba điểm A,B,N thẳng hàng
Từ điểm A nằm ngoài đường tròn (O) vẽ hai tiếp tuyến AD,AE (D,E là các tiếp điểm).Vẽ các tuyến ABC của đường tròn (O) sao cho điểm B nằm giữa hai điểm A và C; tia AC nằm giữa hai tia AD và AO.Từ điểm O kẻ OI vuông góc AC tại I
a.C/m năm điểm A,D,I,O,E cùng nằm trên một đường tròn
b.C/m IA là tia phân giác của DIE và AB.AC=AD^2
c.Gọi K và F lần lượt là giao điểm của ED với AC và OI. Qua điểm D vẽ đường thẳng ssong với IE cắt Ò và AC lần lượt tại H và P.C/m D là trung điểm của HP
Cho đường tròn ( O ; R ) và một điểm S năm bên ngoài đường tròn . Từ S vẽ hai tiếp tuyến SA và SB với đường tròn ( A và B là hai tiếp điểm ) . Vẽ đường thẳng a đi qua S và cắt đường tròn tại hai điểm M , N ( M nằm giữa S và N ) a . Chứng minh : SO I AB b . Gọi H là giao điểm của SO và AB ; I là trung điểm của MN . Hai đường thẳng ÔI và AB cắt nhau tại E . CMR : IHSE nội tiếp . C . Chứng minh rằng : OI . OE = R2
Qua điểm A nằm ngoài đường tròn (O) Kẻ tiếp tuyến AM,AN với M,N là tiếp điểm. a) CMR: bốn điểm A,M,O,N cùng thuộc 1 đường tròn. b) Vẽ cát tuyến ABC tới (O) sao cho tia AO nằm giữa tia AM và tia AC.Chứng minh rằng: AM2 = = AB.AC c) Gọi H là giao điểm của AO và MN.CMR: 4 điểm B,H,O,C cùng thuộc một đường tròn. d) CMR: HN là tia phân giác của góc BHC.
Cho đường tròn tâm O bán kính R và một điểm M nằm ngoài đường tròn.
Qua M kẻ tiếp tuyến MA với đường tròn (A là tiếp điểm). Tia Mx nằm giữa MA và MO cắt
đường tròn (O; R) tại hai điểm C và D (C nằm giữa M và D). Gọi I là trung điểm của dây
CD, kẻ AH vuông góc với MO tại H.
a/ Tính OH. OM theo R.
b/ Chứng minh: Bốn điểm M, A, I , O cùng thuộc một đường tròn.
c/ Gọi K là giao điểm của OI với HA. Chứng minh KC là tiếp tuyến của đường tròn (O; R).
helllpppppppppppp mmmmmmmmmmmmmmmiiiiiiiiiiiiii