a: Tâm đường tròn đó nằm ở trong tam giác
b: Tâm đường tròn đó là trung điểm của cạnh huyền
b: Tâm đường tròn đó nằm ở ngoài tam giác
a: Tâm đường tròn đó nằm ở trong tam giác
b: Tâm đường tròn đó là trung điểm của cạnh huyền
b: Tâm đường tròn đó nằm ở ngoài tam giác
Tính bán kính đường tròn ngoại tiếp tam giác ABC trong các trường hợp sau
a. Tam giác ABC có 2 cạnh góc vuông là a và b
b. Tam giác ABC vuông cân có cạnh góc vuông bằng a
Cho tam giác ABC nhọn, nội tiếp đường tròn (O), Các đường cao BE,CF cắt nhau tại H
a)Chứng minh AKHN nội tiếp đường tròn và xác định tâm của đường tròn ngoại tiếp tứ giác đó.
b)AK.NB=AN.KC.
c)Chứng Minh BKNC nội tiếp.Xác định tâm của đường tròn ngoại tiếp tứ giác đó.
d)Chứng minh AH⊥BC.
f)Đường thẳng BE , CF cắt đường tròn tại P , Q. Chứng minh cung AP = cung AQ
Cho tam giác ABC vuông cân tại A, đường cao AH. Biết AB = 5cm, BC = 6cm. a/ Tính các góc và các cạnh còn lại của tam giác ABC. b/ Dựng đường tròn tâm (O) ngoại tiếp tam giác ABC, tính độ dài bán kính của đường tròn tâm O.
Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Ba đường cao BE; CF cắt nhau tại H
a) Chứng minh bốn điểm B;F;E;C cùng thuộc một đường tròn. Xác định tâm I của đường tròn ngoại tiếp
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Cho tam giác ABC vuông tại A . Gọi O là tâm đường tròn ngoại tiếp tam giác ABC ; d là tiếp
tuyến của đường tròn tại A . Các tiếp tuyến của đường tròn tại B và C cắt d theo thứ tự ở D và E .
a) Tính góc DOE .
b) Chứng minh : DE = BD + CE .
c) Chứng minh : BD.CE = R^2 ( R là bán kính đường tròn tâm O )
d) Chứng minh BC là tiếp tuyến của đường tròn có đường kính DE .
Cho tam giác đều ABC , cạnh a , H là trực tâm
a) Tâm của đường tròn ngoại tiếp tam giác ABC là điểm nào
b) Tính bán kính của đường tròn đó theo a
c) Gọi K là điểm đối xứng với H qua BC. Xác định vị trí tương đối của điểm K với đường tròn đó
Cho tam ABC có ba góc nhọn nội tiếp đường tròn tâm (O). Vẽ hai đường cao BE và CF. a) Chứng minh tứ giác BFEC nội tiếp đường tròn. b) Chứng minh AFE = ACB. c) Chứng minh AO_|_ EF
Cho tam giác ABC nhọn (AB< AC) nội tiếp đường tròn ( O;R) .Đường cao AI ( I thuộc BC) cắt đường tròn (O) tại E . Kẻ đường kính AF. Gọi H là trực tâm của tam giác ABC . Chứng minh IH=IE
Cho tam giác nhọn ABC nội tiếp đường tròn (O) (AB<AC).Gọi H là trực tâm, gọi M là giao điểm của AH với đường tròn (O). Vẽ đường kính AK của (O)
a)Chứng minh tứ giác BHCK là hình bình hành
ai giúp mik vs