Từ một điểm A nằm ngoài đường tròn (O;R) kẻ tiếp tuyến AB với (O) (B là tiếp điểm). Đường thẳng đi qua B vuông góc với OA tại H và cắt đường trong (O) tại C. Vẽ đường kính BD. Đường thẳng AO cắt đường tròn (O) tại 2 điểm M và N (M nằm giữa A và N). Chứng minh:
a) CD//OA
b) AC là tiếp tuyến của đường tròn (O)
c) Cho biết R = 15cm, BC = 24CM. Tính AB, OA
d) Gọi I là trung điểm của HN. Từ H kẻ đường vuông góc với BI cắt BM tại E. Chứng minh: M là trung điểm của BE.
a) Ta có \(OD=OB\) và \(D,B,C\in\left(O;R\right)\)
\(\Rightarrow\) tam giác BCD vuông và vuông tại C
\(\Rightarrow\widehat{DCB}=90^0\) hay \(CD\perp BC\)
Mặt khác \(OH\perp BH\left(gt\right)\)
\(\Rightarrow DC//OH\) mà \(H\in OA\) nên \(DC//OA\)
b) Ta có \(\Delta OCH=\Delta OBH\)
(cạnh huyền cạnh góc vuông)
\(\Rightarrow\widehat{COH}=\widehat{BOH}\) (2 góc tương ứng)
Lại có \(\Delta OCA=\Delta OBA\left(c.g.c\right)\)
\(\Rightarrow\widehat{OCA}=\widehat{OBA}\) (2 góc tương ứng)
mà \(\widehat{ABO}=90^0\) (AB là tiếp tuyến của (O))
nên \(\widehat{OCA}=\widehat{OBA}=90^0\)
và \(C\in AC;C\in\left(O;R\right)\)
\(\Rightarrow\) AC là tiếp tuyến của (O)
c) Ta có: HB = HC = BC : 2 = 24:2=12(cm)
và R = 15 (cm) nên Áp dụng hệ thức cạnh và đường cao trong tam giác vuông vào \(\Delta OAB\left(\widehat{OBA}=90^0\right)\)
thì AB = .... (cm)
Áp dụng định lí Py-ta-go vào 2 tam giác vuông OCB và BAH, ta được:
OH = 9 (cm); HA = ....(cm)
mà OA = OH + HA = 9+.....= ... (cm)
Vậy AB=....(cm); OA =....(cm)