Tứ giác ABCD có hai đường chéo vuông góc với nhau.Gọi E,F,G,H theo thứ tự là trung điểm của các cạnh AB,BC,CD,AD.Tứ giác EFGH là hình gì?Vì sao?
Cho tứ giác ABCD gọi E,F,G,H theo thứ tự là trung điểm của AB,BC,CD,DA. Các đường chéo AC,BD của tứ giác ABCD có điều kiện gì thì EFGH Hình thang
Cho tứ giác ABCD có hai đường chéo AC và BD vuông góc với nhau. Gọi E , F, G, H lần lượt là các trung điểm của các cạnh AB, BC, CD, DA.
a) Tứ giác EFGH là hình gì.
b) Biết Ac = 10cm, BD = 8cm. Tính diện tích tứ giác EFGH.
c) Cần có điều kiện gì để tứ giác EFGH là hình vuông
Bài 1: Cho hình thoi ABCD, O là giao điểm của hai đường chéo. Gọi E, F, G, H theo thứ tự là chân Các đường vuông góc kẻ từ O đến AB, BC, CD, DA. Tứ giác EFGH là hình gì? Vì sao?
Bài 2: Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm BC. D, E lần luợt là hình chiếu của M lên AB và AC.
a) Chứng minh: ADME là hình chữ nhật.
b) Chứng minh: BDEM là hình bình hành.
c) Gọi O là giao điểm của BE và DM, I là trung điểm của EC. Chứng minh: AOMI là hình thang cân.
d) Vẽ đường cao AH của DABC. Tính số đo ∠DHE.
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Các đường chéo AC, BD của tứ giác ABCD có điều kiện gì thì EFGH là :
a) Hình chữ nhật ?
b) Hình thoi
c) Hình vuông ?
Cho tứ giác ABCD .Gọi E,F,G,H theo thứ tụ là trung điểm cúa AB,BC,CD,DA.
a, Chứng minh rằng EFGH là hình bình hành
b, Nếu AC vuông góc với BD thì EFGH là hình gì?
cho tứ giác ABCD gọi E,F,G,H lần lượt là trung điểm của AB,BC,CD,DA.
a) chứng minh tứ giác EFGH là hình bình hành
b) Gọi O là trung điểm EG, chứng minh F đối xứng H qua O
c) các đường chéo AC, BD, của tứ giác ABCD có điều kiện tứ giác EFGH là hình chữ nhật
Cho tứ giác ABCD. Gọi E, F, G, H theo thứ tự là trung điểm của AB, BC, CD, DA. Tìm điều kiện của tứ giác ABCD để EFGH là :
a) Hình chữ nhật
b) Hình thoi
c) Hình vuông
Cho tứ giác ABCD . Gọi M , N , P , Q lần lượt là trung điểm của các cạnh AB , BC , CD , DA
a. Chứng minh tứ giác MNPQ là hbh
b. Hai đường chéo AC và BD thoả điều kiện gì để tứ giác MNPQ là hcn , hình thoi , hình vuông