Bài 9: Hình chữ nhật

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Tứ giác  ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác EFGH là hình gì ? Vì sao ?

Quỳnh Như
17 tháng 7 2017 lúc 11:59

xét tam giác ABC có :

EA = FB (gt)

FB = FC (gt)

\(\Rightarrow EF\) là đường trung bình

\(\Rightarrow\) EF // AC và EF = \(\dfrac{1}{2}\) AC (1)

chứng minh tương tự HG là đường trung bình tam giác ADC

HG // AC và HG = \(\dfrac{1}{2}\) AC (2)

từ (1) và (2) ta suy ra EF // HG và EF = HG

\(\Rightarrow\) EFGH là hình bình hành (3)

ta có : EF // AC

EH // BD ( EH là đường trung bình tam giác ABD )

AC \(\perp\) BD ( gt )

\(\Rightarrow\) EF \(\perp\) EH

hay góc E = 90 độ (4)

từ (3) và (4) ta suy ra EFGH là hình chữ nhật


Hỏi đáp Toán
Thien Tu Borum
21 tháng 4 2017 lúc 15:30

Bài giải:

Ta có EB = EA, FB = FC (gt)

Nên EF là đường trung bình của ∆ABC

Do đó EF // AC

HD = HA, GD = GC

Nên HG là đường trung bình của ∆ADC

Do đó HG // AC

Suy ra EF // HG

Tương tự EH // FG

Do đó EFGH là hình bình hành.

EF // AC và BD ⊥ AC nên BD ⊥ EF

EH // BD và EF ⊥ BD nên EF ⊥ EH hay ˆFEHFEH^ = 900

Hình bình hành EFGH có ˆEE^ = 900 nên là hình chữ nhật.


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Nguyễn Thị Thùy Linh
Xem chi tiết
Lâm Hoàng
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
easpogfau
Xem chi tiết
Anh Tuấn Nguyễn
Xem chi tiết
Trần Lê Gia Bảo
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết