Chương II - Đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đỗ Thanh Tùng

Từ điểm A ở ngoài đường tròn (0;R) vẽ hai tiếp tuyến AB,AC (B,C là các tiếp điểm ) và các tuyến ADE thuộc nữa mặt phẳng bỏ là đường thẳng OA không chứa điểm B của đường tròn (O) . Gọi H là giao điểm của OA và BC .

a, Chứng minh bốn điểm A,B,O,C cùng thuộc một đường tròn .

b, Chứng minh : AO vuông BC tại H và AH.AO =AD.AE

c, Đường thẳng đi qua điểm D và song song với đường thẳng BE cắt AB,BC lần lượt tại I,X .Chứng minh tứ giác OHDE nội tiếp và D là trung điểm của IK.

Nguyễn Lê Phước Thịnh
10 tháng 1 2021 lúc 9:49

a) Gọi M là trung điểm của OA

Ta có: ΔOBA vuông tại B(OB⊥BA)

mà BM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(BM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(1)

Ta có: ΔOCA vuông tại C(OC⊥CA)

mà CM là đường trung tuyến ứng với cạnh huyền OA(M là trung điểm của OA)

nên \(CM=\dfrac{OA}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Ta có: M là trung điểm của OA(gt)

nên \(OM=AM=\dfrac{OA}{2}\)(3)

Từ (1), (2) và (3) suy ra MA=MB=MO=MC

hay A,B,O,C cùng thuộc một đường tròn(đpcm)

b) Xét (O) có

AB là tiếp tuyến có B là tiếp điểm(gt)

AC là tiếp tuyến có C là tiếp điểm(gt)

Do đó: AB=AC(Tính chất hai tiếp tuyến cắt nhau)

Ta có: AB=AC(cmt)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(1)

Ta có: OB=OC(=R)

nên O nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(2)

Từ (1) và (2) suy ra OA là đường trung trực của BC

⇔OA⊥BC

mà OA cắt BC tại H(gt)

nên OA⊥BC tại H(đpcm)


Các câu hỏi tương tự
Nhật Trương
Xem chi tiết
Người Bí Ẩn
Xem chi tiết
Phương Linh
Xem chi tiết
Phương Linh
Xem chi tiết
vy kim bình
Xem chi tiết
Lại Văn Định
Xem chi tiết
Bùi Tiến Thành
Xem chi tiết
Linh Nguyễn
Xem chi tiết
Nguyễn Tôn Gia Kỳ
Xem chi tiết