Từ 1 điểm S ở bên ngoài đường tròn (O), vẽ tiếp tuyến SA, A là tiếp điểm và cát tuyến SBC (\(\widehat{BAC}< 90^o\)), đường phân giác của \(\widehat{BAC}\) cắt BC tại D và (O;R) tại E. Các tiếp tuyến tại C và E cắt nhau tại N, P là giao điểm của AE và CN, Q là giao điểm của AB và CE
a) Chứng minh: \(AB.AC=AD.AE\)
b) Chứng minh: \(\Delta\) SAD cân
c) Chứng minh: \(SA^2=SB.SC\)
d) Chứng minh: tứ giác ACPQ nội tiếp
e) Chứng minh: \(\dfrac{1}{CN}=\dfrac{1}{CD}+\dfrac{1}{CP}\)
Còn câu e) thôi. HELP !!!
a) Vì AE là phân giác \(\widehat{BAC}\)
\(\Rightarrow\) \(\widehat{BAE}=\widehat{EAC}\) hay \(\widehat{BAD}=\widehat{EAC}\)
Xét (O) có: \(\widehat{CBA}=\widehat{AEC}\)(cùng chắn \(\stackrel\frown{AC}\))
hay \(\widehat{DBA}=\widehat{AEC}\)
Xét ΔBAD và ΔEAC có:
\(\widehat{BAD}=\widehat{EAC}\) (cmtrn)
\(\widehat{DBA}=\widehat{AEC}\) (cmtrn)
\(\Rightarrow\) ΔBAD∼ΔEAC (g.g)
\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AC}\) \(\Leftrightarrow AB.AC=AE.AD\) (đpcm)
b) Theo CM a) ΔBAD∼ΔEAC
\(\widehat{BDA}=\widehat{ECA}\) hay \(\widehat{SDA}=\widehat{ECA}\) (1)
Xét (O) có: \(\widehat{ECA}=\widehat{EAS}\) (cùng chắn \(\stackrel\frown{EA}\))
hay \(\widehat{ECA}=\widehat{DAS}\) (2)
Từ (1) và (2) \(\Rightarrow\) \(\widehat{SDA}=\widehat{DAS} \) \((=\widehat{ECA})\)
\(\Rightarrow\) ΔDSA cân tại S
c) Xét (O) có: \(\widehat{BCA}=\widehat{BAS}\) (cùng chắn \(\stackrel\frown{AB}\))
hay \(\widehat{SCA}=\widehat{BAS}\)
Xét ΔCSA và ΔASB có:
\(\widehat{CSA}:chung\)
\(\widehat{SCA}=\widehat{BAS}\)
\(\Rightarrow\) ΔCSA∼ΔASB (g.g)
\(\Rightarrow\frac{SC}{SA}=\frac{SA}{SB}\) \(\Leftrightarrow SC.SB=SA^2\) (đpcm)
d) Xét (O) có: \(\widehat{ECP}=\widehat{EAC}\) (cùng chắn \(\stackrel\frown{EC}\))
hay \(\widehat{QCP}=\widehat{EAC}\) (3)
Theo CM a) \(\widehat{BAE}=\widehat{EAC}\) hay \(\widehat{QAP}=\widehat{EAC}\) (4)
Từ (3) và (4) \(\Rightarrow\) \(\widehat{QCP}=\widehat{QAP}\) \((=\widehat{EAC})\)
\(\Rightarrow\) Tứ giác QACP nội tiếp đường tròn (theo dhnb tứ giác nội tiếp).