G là trọng tâm tam giác ABC
\(\Rightarrow\left\{{}\begin{matrix}3=\dfrac{x_A-1+x_C}{3}\\1=\dfrac{y_A+0+y_C}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_A+x_C=10\\y_A+y_C=3\end{matrix}\right.\)
Gọi I là giao điểm của AC và BD.
ABCD là hình bình hành
\(\Rightarrow\) I là trung điểm của AC, I là trung điểm của BD.
I là trung điểm của AC \(\Rightarrow I\left(5;\dfrac{3}{2}\right)\).
I là trung điểm của BD
\(\Rightarrow\left\{{}\begin{matrix}5=\dfrac{-1+x_D}{2}\\\dfrac{3}{2}=\dfrac{0+y_D}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_D=11\\y_D=3\end{matrix}\right.\)
\(\Rightarrow D\left(11;3\right)\).