Gọi \(M\left(x_0;y_0\right)\) là 1 điểm thuộc d \(\Rightarrow3x_0+y_0-2=0\) (1)
Gọi M' là ảnh của M qua phép vị tự tâm O tỉ số k \(\Rightarrow M'\in d'\)
\(\left\{{}\begin{matrix}x_{M'}=kx_M\\y_{M'}=ky_M\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_{M'}=-\frac{1}{2}x_0\\y_{M'}=-\frac{1}{2}y_0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_0=-2x_{M'}\\y_0=-2y_{M'}\end{matrix}\right.\)
Thế vào (1): \(3.\left(-2x_{M'}\right)-2y_{M'}-2=0\)
\(\Leftrightarrow3x_{M'}+y_{M'}+1=0\)
Vậy pt d' có dạng: \(3x+y+1=0\)