Bài 4: Hai mặt phẳng song song

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Trong mặt phẳng \(\left(\alpha\right)\) cho hình bình hành ABCD. Qua A, B, C , D lần lượt vẽ bốn đường thẳng a, b, c, d song song với nhau và không nằm trên \(\left(\alpha\right)\). Trên a, b, c lần lượt lấy 3 điểm A', B', C' tùy ý

a) Hãy xác định giao điểm D' của đường thẳng d với mặt phẳng (A'B'C')

b) Chứng minh A'B'C'D' là hình bình hành

qwerty
31 tháng 3 2017 lúc 10:23

a) Gọi O = AC ∩ BD; O' là trung điểm A'C' thì OO' // AA'

=> OO'// d // b mà O BD mp (b;d)

=> OO' mp(b;d). Trong mp (b;d) ( mặt phẳng xác định bởi hai đường thẳng song song); d ∩ B'O' = D' là điểm cần tìm

b) Chứng minh mp(a;d) // mp( b;c) , mặt phẳng thứ 3 (A'B'C'D') cắt hai mặt phẳng trên theo hai giao tuyến song song : A'D' // B'C'. Chứng minh tương tự được A'B' // D'C'. Từ đó suy ra A'B'C'D' là hình bình hành


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
lưu khang tương
Xem chi tiết