Bài 4: Hai mặt phẳng song song

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Sách Giáo Khoa

Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi M và M' lần lượt là trung điểm của các cạnh BC và B'C'

a) Chứng minh rằng AM song song với A'M'

b) Tìm giao tuyến của mặt phẳng (AB'C') với đường thẳng A'M

c) Tìm giao tuyến d của hai mặt phẳng (AB'C') và (BA'C')

d) Tìm giao điểm G của đường thẳng d với mặt phẳng (AM'M)

     Chứng minh G là trọng tâm của tam giác AB'C'

qwerty
31 tháng 3 2017 lúc 10:29

a) Do MM' lần lượt là trung điểm của BC và B'C' nên M'M//BB'//CC'. Vì vậy MM'//AA'.
Vì vậy tứ giác A'M'MA là hình bình hành. Suy ra: AM//A'M'.
b) Trong mp (AA'M'M), ta có: MA' ∩ AM' = K.
     Do \(K\in A'M\)  và \(A'M\in\left(AB'C'\right)\) nên K (AB'C').

c) Có \(O=AB'\cap A'B\) nên \(O\in\left(AB'C'\right)\cap\left(BA'C'\right)\).
 Suy ra: \(d\equiv CO'\).

d) Trong (AB'C'): C'O ∩ AM' = G vì vậy G ( AMM') . Mà O, M' lần lượt là trung điểm AB' và B'C' nên G là trọng tâm của tam giác AB'C'.

 


Các câu hỏi tương tự
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lucia Mip
Xem chi tiết
tanhuquynh
Xem chi tiết
TRƯƠNG HUYỀN TRÂN
Xem chi tiết
VÕ BẢO TRÂN_nh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Lan Hương
Xem chi tiết