Lời giải:
Ta có:
\(\overrightarrow{MA_1}+\overrightarrow{MA_2}+....+\overrightarrow{MA_{2014}}\)
\(=(\overrightarrow{MA_{2015}}+\overrightarrow{A_{2015}A_1})+(\overrightarrow{MA_{2015}}+\overrightarrow{A_{2015}A_2})+.....+(\overrightarrow{MA_{2015}}+\overrightarrow{A_{2015}A_{2014}})\)
\(=2014\overrightarrow{MA_{2015}}+\overrightarrow{A_{2015}A_1}+\overrightarrow{A_{2015}A_2}+...+\overrightarrow{A_{2015}A_{2014}}\)
Do đó:
\(\overrightarrow{MA_1}+\overrightarrow{MA_2}+....+\overrightarrow{MA_{2014}}-2014\overrightarrow{MA_{2015}}=\overrightarrow{A_{2015}A_1}+\overrightarrow{A_{2015}A_2}+.....+\overrightarrow{A_{2015}A_{2014}}\)
Suy ra\(|\overrightarrow{MA_1}+\overrightarrow{MA_2}+....+\overrightarrow{MA_{2014}}-2014\overrightarrow{MA_{2015}}|=|\overrightarrow{A_{2015}A_1}+\overrightarrow{A_{2015}A_2}+.....+\overrightarrow{A_{2015}A_{2014}}|\)
Vậy \(|\overrightarrow{MA_1}+\overrightarrow{MA_2}+....+\overrightarrow{MA_{2014}}-2014\overrightarrow{MA_{2015}}|\) không phụ thuộc vào M