§2. Tổng và hiệu của hai vectơ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Michelle

Cho hình bình hành ABCD có tâm là O và gọi G là trọng tâm tam giác ABC

a. Chứng minh \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{BA}\)

b. Xác định điểm M sao cho: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)

Akai Haruma
24 tháng 9 2017 lúc 21:08

Lời giải:

a) Gọi giao của hai đường chéo là $I$ thì $I$ là trung điểm của $AD$ và $BC$

Do đó, \(A,G,I,D\) thẳng hàng. Áp dụng tính chất của đường trung tuyến:

\(\bullet \overrightarrow{GA}=\frac{-1}{3}\overrightarrow{AD}\)

\(\bullet \overrightarrow{GB}=\overrightarrow{GA}+\overrightarrow{AB}\)

\(\bullet \overrightarrow{GD}=\frac{2}{3}\overrightarrow{AD}\)

\(\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=2\overrightarrow{GA}+\overrightarrow{AB}+\overrightarrow{GD}=\frac{-2}{3}\overrightarrow{AD}+\overrightarrow{AB}+\frac{2}{3}\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GD}=\overrightarrow{AB}\)

b) Áp dụng công thức phần a:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GM}=\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{AB}-\overrightarrow{GD}+\overrightarrow{GM}=\overrightarrow{AD}\)

\(\Leftrightarrow \overrightarrow{GM}-\overrightarrow{GD}=\overrightarrow{AD}-\overrightarrow{AB}\)

\(\Leftrightarrow \overrightarrow{DM}=\overrightarrow{BD}\)

Do đó $M$ là điểm nằm trên đường thằng $BD$ sao cho $D$ là trung điểm của $BM$


Các câu hỏi tương tự
Nguyễn Hoàng Phương
Xem chi tiết
Đinh Quỳnh Hương Giang
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Trịnh Trâm Anh
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Hoàng Yến Nghiêm
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết