Mỗi tập con gồm 3 điểm (không phân biệt thứ tự) của tập hợp 6 điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ 6 điểm đã cho) là:
C36 = = 20 (tam giác)
Mỗi tập con gồm 3 điểm (không phân biệt thứ tự) của tập hợp 6 điểm đã cho xác định duy nhất một tam giác. Từ đó ta có: số tam giác có thể lập được (từ 6 điểm đã cho) là:
C36 = = 20 (tam giác)
Cho 15 điểm phân biệt, trong đó có 6 điểm thẳng hàng, trong số 9 điểm còn lại không có 3 điểm nào
thẳng hàng và không có 2 điểm nào thẳng hàng với bất kì 1 điểm nào đó trong 6 điểm nêu ở trên. Hỏi có bao
nhiêu tam giác mà các đỉnh của chúng lấy từ 15 điểm đã cho?
Cho 2 đường thẳng song song d1 và d2 . Trên d1 lấy 11 điểm phân biệt , d2 lấy 7 điểm phân biệt
a) Có bao nhiêu tam giác có đỉnh là các điểm nói trên
b) Có bao nhiêu hình thang có đỉnh là các điểm nói trên
Cho 35 đường thẳng trên cùng một mặt phẳng, hỏi chúng chia mặt phẳng thành
bao nhiêu phần trong các trường hợp sau đây:
1) Có 8 đường thẳng song song với nhau và 8 đường thẳng đồng quy tại 1 điểm.
2) Nếu vẽ thêm 1 đường thẳng đi qua giao điểm của 8 đường đồng quy và không
song song với các đường thẳng đã cho.
cho tam giác ABC. Trên cạnh AB lấy 6 điểm, cạnh BC lấy 7 điểm, CA lấy 5 điểm ( k trùng đỉnh tam giác). hỏi có thể dựng đc bao nhiêu tứ giác mà đỉnh của nó phai thuộc 3 cạnh của tam giác
cho tam giác ABC. trên cạnh AB lấy 6 điểm, cạnh BC lấy 7 điểm, CA lấy 5 điểm ( k trùng đỉnh tam giác). hỏi có thể dựng đc bao nhiêu tứ giác mà đỉnh của nó phai thuộc 3 cạnh của tam giác
Cho A = { 0 1 2 3 4 5 6 7 8 9 } Từ tập hơhp A có thể lập được bao nhiêu số có 7 chữ số khác nhau sao cho:
a. Luôn có mặt hai chữ số 0 và 9
b. Hai chữ số 1 và 6 không đứng cạnh nhau
Cho đa giác lồi n cạnh. Hỏi có bao nhiêu tam giác có 3 đỉnh là đỉnh của đa giác, còn ba cạnh không là cạnh của đa giác?
Cho một đa giác đều bảy cạnh, kẻ các đường chéo. Hỏi có bao nhiêu giao điểm của các đường chéo trừ các đỉnh
?