Bài 3.2: Vị trí tương đối giữa đường thẳng và mặt phẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan Trần Quốc Bảo

Trong không gian với hệ tọa độ Oxyz, cho điểm A(-2;1;5), mặt phẳng (P) : \(2x-2y+z-1=0\) và đường thẳng (d)\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{1}\). Tính khoảng cách từ A đến (P). Viết phương trình mặt phẳng (Q) đi qua A, vuông góc với (P) và song song với d.

Thiên An
8 tháng 4 2016 lúc 10:16


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)


Các câu hỏi tương tự
Dao Nguyen
Xem chi tiết
Nguyễn Thị Châm
Xem chi tiết
Dao Nguyen
Xem chi tiết
Dương Hoàng Hữu
Xem chi tiết
Huyền Đoàn
Xem chi tiết