Bài tập cuối chương 1

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Trong Hình 1, cây xanh AB nằm trên đường xích đạo được trồng vuông góc với mặt đất và có chiều cao 5 m. Bóng của cây là BE. Vào ngày xuân phân và hạ phân, điểm E di chuyển trên đường thẳng Bx. Góc thiên đỉnh \({\theta _t} = (AB,AE)\) phụ thuộc vào vị trí của Mặt trời và thay đổi theo thời gian trong ngày theo công thức \({\theta _s}(t) = (AB,AE) = \frac{\pi }{{12}}(t - 12)\;\) rad với t là thời gian trong ngày (theo đơn vị giờ, 6 < t < 18).

(Theo https://www.sciencedirect.com/topics/engineering/solar-hour-angle)

a) Viết hàm số biểu diễn toạ độ của điểm E trên trục Bx theo t.

b) Dựa vào đồ thị hàm số tang, hãy xác định các thời điểm mà tại đó bóng cây phủ qua vị trí tường rào N biết N nằm trên trục Bx với toạ độ là \({x_N} =  - 4\;\) (m). Làm tròn kết quả đến hàng phần mười.

Hà Quang Minh
25 tháng 8 2023 lúc 15:11

a, Xét tam giác ABE vuông tại B, ta có: 

\(tan\theta_s\left(t\right)=\dfrac{BE}{AB}\Leftrightarrow BE=5tan\left[\dfrac{\pi}{12}\left(t-12\right)\right]\)

b, Đồ thị của hàm số \(\theta_s=5tan\left[\dfrac{\pi}{12}\left(t-12\right)\right]\)

Dựa vào đồ thị hàm số, ta có:

\(\theta_s=5tan\left[\dfrac{\pi}{12}\left(t-12\right)\right]< -4\\ \Leftrightarrow tan\left[\dfrac{\pi}{12}\left(t-12\right)\right]< -\dfrac{4}{5}\\ \Leftrightarrow\dfrac{\pi}{12}\left(t-12\right)< -0,67\\ \Leftrightarrow t< 9,4\)

Kết hợp điều kiện \(6< t< 18\Rightarrow6< t< 9,4\)

Vậy thời điểm bóng cây phủ qua hàng rào là 6 < t < 9,4.


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Quoc Tran Anh Le
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết