Trong hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình : \(\left(x-3\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=100\) và mặt phẳng \(\left(\alpha\right)\) có phương trình \(2x-2y-z+9=0\). Mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu (S) theo một đường tròn (C)
Hãy xác định tọa độ tâm và tính bán kính của đường tròn (C) ?
Trong hệ tọa độ Oxyz, cho mặt \(\left(\alpha\right)\) có phương trình \(3x+5y-z-2=0\) và đường thẳng d có phương trình :
\(\left\{{}\begin{matrix}x=12+4t\\y=9+3t\\z=1+t\end{matrix}\right.\)
a) Tìm giao điểm M của đường thẳng d và mặt phẳng \(\left(\alpha\right)\)
b) Viết phương trình mặt phẳng \(\left(\beta\right)\) chứa điểm M và vuông góc với đường thẳng d
Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính là AB biết rằng \(A\left(6;2;-5\right);B\left(-4;0;7\right)\) :
a) Tìm tọa độ tâm I và tính bán kính r của mặt cầu (S)
b) Lập phương trình của mặt cầu (S)
c) Lập phương trình của mặt phẳng \(\left(\alpha\right)\) tiếp xúc với mặt cầu (S) tại điểm A
Cho mặt phẳng \(\left(\alpha\right)\) có phương trình tổng quát :
\(2x+y-z-6=0\)
a) Viết phương trình mặt phẳng \(\left(\beta\right)\) đi qua O và song song với \(\left(\alpha\right)\)
b) Viết phương trình tham số của đường thẳng đi qua gốc tọa độ và vuông góc với mặt phẳng \(\left(\alpha\right)\)
c) Tính khoảng cách từ gốc tọa độ đến mặt phẳng \(\left(\alpha\right)\)
Tìm tọa độ điểm H là hình chiếu vuông góc của điểm \(M\left(1;-1;2\right)\) trên mặt phẳng \(\left(\alpha\right):2x-y+2z+11=0\) ?
Trong hệ tọa độ Oxyz, cho 4 điểm \(A\left(-2;6;3\right);B\left(1;0;6\right);C\left(0;2;-1\right);D\left(1;4;0\right)\)
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện
b) Tính chiều cao AH của tứ diện ABCD
c) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa AB và song song với CD
Trong hệ tọa độ Oxyz, cho điểm \(A\left(-1;2;-3\right)\), vectơ \(\overrightarrow{a}=\left(6;-2;-3\right)\) và đường thẳng d có phương trình :
\(\left\{{}\begin{matrix}x=1+3t\\y=-1+2t\\z=3-5t\end{matrix}\right.\)
a) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa điểm A và vuông góc với giá của \(\overrightarrow{a}\)
b) Tìm giao điểm M của d và \(\left(\alpha\right)\)
c) Viết phương trình đường thẳng \(\Delta\) đi qua điểm A, vuông góc với giá của \(\overrightarrow{a}\) và cắt đường thẳng d
Trong hệ tọa độ Oxyz, tìm tọa độ điểm A' đối xứng với điểm \(A\left(1;-2;-5\right)\) qua đường thẳng \(\Delta\) có phương trình :
\(\left\{{}\begin{matrix}x=1+2t\\y=-1-t\\z=2t\end{matrix}\right.\)
Trong không gian với hệ tọa độ Oxyz, mặt cầu đi qua 3 điểm A(2;0;1), B(1;0;0), C(1;1;1) và có tâm thuộc mp \(\left(P\right):x+y+z-2=0\) có pt là
A.\(\left(x-1\right)^2+y^2+\left(z-1\right)^2=1\)
B. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=1\)
C. \(\left(x-1\right)^2+y^2+\left(z-1\right)^2=4\)
D. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=4\)