Trong không gian Oxyz, cho bốn điểm \(A\left(1;0;0\right),B\left(0;1;0\right),C\left(0;0;1\right),D\left(1;1;0\right)\)
a) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D
b) Xác định tọa đọ tâm và bán kính của đường tròn là giao tuyến của mặt cầu (S) với mặt phẳng (ACD)
Trong hệ tọa độ Oxyz, cho 4 điểm \(A\left(-2;6;3\right);B\left(1;0;6\right);C\left(0;2;-1\right);D\left(1;4;0\right)\)
a) Viết phương trình mặt phẳng (BCD). Suy ra ABCD là một tứ diện
b) Tính chiều cao AH của tứ diện ABCD
c) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa AB và song song với CD
Cho hình hộp chữ nhật OAIB.CEDF có tọa độ các đỉnh là \(A\left(3;0;0\right),B\left(0;4;0\right),C\left(0;0;5\right),O\left(0;0;0\right)\)
a) Xác định tọa độ đỉnh D. Viết phương trình tổng quát của mặt phẳng (ABD)
b) Viết phương trình tham số của đường thẳng đi qua D và vuông góc với mặt phẳng (ABD)
c) Viết phương trình mặt cầu (S) ngoại tiếp tứ diện ABCD
d) Tính khoảng cách giữa hai đường thẳng AC và EF
Trong không gian Oxyz, cho 4 điểm \(A\left(2;4;-1\right),B\left(1;4;-1\right),C\left(1;4;3\right),D\left(2;2;-1\right)\)
a) Chứng minh rằng các đường thẳng AB, AC, AD vuông góc với nhau từng đôi một
b) Viết phương trình tham số của đường vuông góc chung \(\Delta\) của hai đường thẳng AB và CD
c) Viết phương trình mặt cầu (S) đi qua bốn điểm A, B, C, D
d) Viết phương trình mặt phẳng \(\left(\alpha\right)\) tiếp xúc với mặt cầu (S) và song song với mặt phẳng (ABD)
Cho hình chóp S.ABCD có đáy là hình thoi ABCD. AC cắt BD tại gốc tọa độ O. Biết \(A\left(2;0;0\right),B\left(0;1;0\right),S\left(0;0;2\sqrt{2}\right)\). Gọi M là trung điểm cạn SC
a) Viết phương trình mặt phẳng SA và song song với BM
b) Tính khoảng cách giữa hai đường thẳng SA và BM
Trong hệ tọa độ Oxyz, cho mặt cầu (S) có đường kính là AB biết rằng \(A\left(6;2;-5\right);B\left(-4;0;7\right)\) :
a) Tìm tọa độ tâm I và tính bán kính r của mặt cầu (S)
b) Lập phương trình của mặt cầu (S)
c) Lập phương trình của mặt phẳng \(\left(\alpha\right)\) tiếp xúc với mặt cầu (S) tại điểm A
Trong không gian với hệ tọa độ Oxyz, mặt cầu đi qua 3 điểm A(2;0;1), B(1;0;0), C(1;1;1) và có tâm thuộc mp \(\left(P\right):x+y+z-2=0\) có pt là
A.\(\left(x-1\right)^2+y^2+\left(z-1\right)^2=1\)
B. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=1\)
C. \(\left(x-1\right)^2+y^2+\left(z-1\right)^2=4\)
D. \(\left(x-3\right)^2+\left(y-1\right)^2+\left(z+2\right)^2=4\)
18. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(3;-4;0\right)\) , \(B\left(0;2;4\right)\) , \(C\left(4;2;1\right)\) . Tìm tọa độ điểm D thuộc trục Ox sao cho AD = BC
A. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(6;0;0\right)\end{matrix}\right.\)
B. \(D\left(0;-6;0\right)\)
C. \(\left[{}\begin{matrix}D\left(0;0;0\right)\\D\left(-6;0;0\right)\end{matrix}\right.\)
D. \(D\left(6;0;0\right)\)
11. Trong không gian với hệ tọa Oxyz, mặt cầu \(\left(S\right):\) \(x^2+y^2+z^2-2x+4y-4=0\) cắt mp \(\left(P\right):\) \(x+y-z+4=0\) theo giao tuyến đường tròn \(\left(C\right)\) . Tính diện tích S của đường tròn \(\left(C\right)\)
A. \(S=\frac{2\pi\sqrt{78}}{3}\)
B. \(S=2\pi\sqrt{6}\)
C. \(S=6\pi\)
D. \(S=\frac{26\pi}{3}\)
14. Trong không gian Oxyz, mặt cầu tâm \(I\left(1;2;-1\right)\) cắt mp \(\left(P\right):\) \(x-2y-2z-8=0\) theo một đường tròn có bán kính bằng 4 có pt là
A. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=5\)
B. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=9\)
C. \(\left(x-1\right)^2+\left(y-2\right)^2+\left(z+1\right)^2=25\)
15. Trong không gian với hệ tọa độ Oxyz, cho 3 điểm \(A\left(2;-1;3\right)\) , \(B\left(4;0;1\right)\) , \(C\left(-10;5;3\right)\) Vecto nào dưới đây là VTPT của mp \(\left(ABC\right)\)
A. \(\overrightarrow{n_1}\left(1;2;0\right)\)
B. \(\overrightarrow{n_2}\left(1;2;2\right)\)
C. \(\overrightarrow{n_3}\left(1;8;2\right)\)
D. \(\overrightarrow{n_4}\left(1;-2;2\right)\)
D. \(\left(x+1\right)^2+\left(y+2\right)^2+\left(z-1\right)^2=3\)
Trong hệ tọa độ Oxyz, cho điểm \(A\left(-1;2;-3\right)\), vectơ \(\overrightarrow{a}=\left(6;-2;-3\right)\) và đường thẳng d có phương trình :
\(\left\{{}\begin{matrix}x=1+3t\\y=-1+2t\\z=3-5t\end{matrix}\right.\)
a) Viết phương trình mặt phẳng \(\left(\alpha\right)\) chứa điểm A và vuông góc với giá của \(\overrightarrow{a}\)
b) Tìm giao điểm M của d và \(\left(\alpha\right)\)
c) Viết phương trình đường thẳng \(\Delta\) đi qua điểm A, vuông góc với giá của \(\overrightarrow{a}\) và cắt đường thẳng d