\(PT:\)
\(\left(x-2\right)^2+\left(y+7\right)=3^2=9\)
=> B
\(PT:\)
\(\left(x-2\right)^2+\left(y+7\right)=3^2=9\)
=> B
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)^2+\left(y-2\right)^2=4\) và đường thẳng \(d:a-y-1=0\). Viết phương trình đường tròn (C') đối xứng với đường tròn (C) qua đường thẳng d. Tìm tọa độ các giao điểm của (C) và (C') ?
Trong mặt phẳng tọa dộ Oxy, cho đường tròn (C) : \(\left(x-2\right)^2+y^2=\dfrac{4}{5}\) và hai đường thẳng \(\Delta_1:x-y=0\); \(\Delta_2:x-7y=0\). Xác định tọa độ tâm K và tính bán kính của đường tròn (\(C_1\)) biết đường tròn \(\left(C_1\right)\) tiếp xúc với các đường thẳng \(\Delta_1;\Delta_2\) và tâm K thuộc đường tròn (C)
Cho phương trình : \(x^2+y^2-1mx-4\left(m-2\right)y+6=0\) (1)
a) Tìm điều kiện của m để (1) là phương trình của đường tròn, ta kí hiệu là \(\left(C_m\right)\)
b) Tìm tập hợp các tâm của \(\left(C_m\right)\) khi m thay đổi
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có \(A\left(0;2\right);B\left(-2;2\right);C\left(4;-2\right)\). Gọi H là chân đường cao kẻ từ B, M và N lần lượt là trung điểm của các cạnh AB và BC. Viết phương trình đường tròn đi qua các điểm H, M, N
Trong một mặt phẳng Oxy cho điểm M(6;0) và đường thẳng \(\left(\Delta\right)\) : x+2y-9=0
a,Tính khoảng cách từ M đến \(\left(\Delta\right)\)
b, Viết phương trình đường tròn tâm M và tiếp xúc với \(\left(\Delta\right)\)
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) : \(\left(x-1\right)\left(^2y+2\right)^2=9\) và đường thẳng \(d:3x-4y+m=0\). Tìm m để trên d có duy nhất một điểm P mà từ đó có thể kẻ được hai tiếp tuyến PA, PB với (C) (A, B là các tiếp điểm) sao cho tam giác PAB đều
Cho họ đường tròn (\(C_m\)) : \(x^2+y^2-2mx+4my+5m^2-1=0\)
a) Chứng minh rằng họ \(\left(C_m\right)\) luôn luôn tiếp xúc với hai đường thẳng cố định
b) Tìm m để \(\left(C_m\right)\) cắt đường tròn \(\left(C\right):x^2+y^2=1\) tại hai điểm phân biệt A, B
Cho ba điểm \(A\left(3;5\right);B\left(2;3\right);C\left(6;2\right)\)
a) Viết phương trình đường tròn (C) ngoại tiếp tam giác ABC
b) Hãy xác định tọa độ của tâm và bán kính của (C)
Trong mặt phẳng tọa độ Oxy, cho hình chữ nhật ABCD có tâm \(I\left(\dfrac{1}{2};0\right)\) phương trình đường thẳng AB là : \(x-2y+2=0\) và AB = 2AD. Tìm tọa độ các đỉnh A, B, C, D biết đỉnh A có hoành độ âm ?