a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
a) Mỗi hình vuông là một hình thoi (có một góc vuông). Vậy A ⊂ B, A ≠ B.
b) Mỗi số là ước của 6 là một ước chung của 24 và 30.
n ∈ B => n ∈ A. Vậy B ⊂ A. Mặt khác mỗi ước chung của 24 và 30 là một ước của 6. Vậy A ⊂ B. Suy ra A= B.
$\text{ Cho hai tập hợp M = [ 2m-1;2m+5] và N = [ m+1;m+7] }$
$\text{ ( Với m là tham số thực )}$
$\text{ Hỏi : Tổng }$ tất cả các giá trị của $m$ để hợp của 2 tập hợp $M$ và $N$ là $1$ đoạn có độ dài bằng $10$ là ?
Cho hai điểm cố định A, B. Tìm tập hợp các điểm M thỏa mãn [vecto ma+mb]=[vecto ma-mb]
A. Tập hợp các điểm M là đường tròn đường kính AB
B. Tập hợp các điểm M là đường trung trực của AB.
C. Tập hợp các điểm M là nửa đường tròn đường kính AB
D. Tập hợp các điểm M là đường tròn bán kính AB
Giúp em với ạ
đây nữa ạ:
đây nữa ạ, giúp em với
Chứng minh rằng không thể chia 1 tập hợp gồm 18 số tự nhiên liên tiếp thành 2 tập hợp rời nhau sao cho tích các phân tử A bằng tích các phần tử tập hợp B
cho hai tập hợp X=(n\(\in\)N/n là bội số của 4 và 6)
Y=( n\(\in\)N/ nlaf bội số của 12) .
Chứng minh rằng X và Y là hai tập hợp bằng nhau
Cho hai tập hợp A = {0; 2} và B = {0; 1; 2; 3; 4}. Có bao nhiêu tập hợp X thỏa mãn A ∪ X = B?
Nếu tập hợp A có n phần tử , k là số tự nhiên nhỏ hơn hoặc bằng n. Tìm số tập con của A có k phần tử
Cho tập hợp \(A=\left\{x\in Z\text{ | }\frac{x^2+2}{x}\in Z\right\}\)
a,Hãy xác định tập A bằng cách liệt kê các phần tử
b,Hãy tìm tất cả các tập con của tập hợp A mà số phần tử của nó nhỏ hơn 3