Xét hàm \(y=f\left(x\right)=sin2x\)
\(f\left(-x\right)=sin\left(-2x\right)=-sin2x=-f\left(x\right)\)
\(\Rightarrow y=sin2x\) là hàm lẻ
Xét hàm \(y=f\left(x\right)=sin2x\)
\(f\left(-x\right)=sin\left(-2x\right)=-sin2x=-f\left(x\right)\)
\(\Rightarrow y=sin2x\) là hàm lẻ
Xét tính chẵn, lẻ của các hàm số
1,\(y=cosx+sin^2x\)
2,\(y=sinx+cosx\)
3,\(y=tanx+2sinx\)
4,\(y=tan2x-sin3x\)
5,\(sin2x+cosx\)
6,\(y=cosx.sin^2x-tan^2x\)
7,\(y=cos\left(x-\dfrac{\pi}{4}\right)+cos\left(x+\dfrac{\pi}{4}\right)\)
8,\(y=\dfrac{2+cosx}{1+sin^2x}\)
9,\(y=\left|2+sinx\right|+\left|2-sinx\right|\)
Tìm tập xác định của các hàm số sau:
1,\(y=sin\dfrac{3x+2}{2x-1}\)
2,\(y=tan\left(3x+\dfrac{2\pi}{5}\right)\)
3,\(y=cot\left(2x-\dfrac{1}{3}\right)\)
4,\(y=\dfrac{sinx+cosx}{sinx-cosx}\)
5,\(y=\dfrac{1}{sinx}+\dfrac{1}{cosx}\)
6,\(y=\dfrac{\sqrt{1-sinx}}{cosx}\)
7,\(y=\dfrac{3}{sin^2x-cos^2x}\)
8,\(y=\dfrac{1+tanx}{1+sinx}\)
9,\(y=\sqrt{\dfrac{1+sinx}{1-cosx}}\)
Chứng minh các hàm số sau tuần hoàn, tìm chu kì T:
\(a,y=\left|sinx\right|\)
\(b,y=cosx+sinx\)
\(c,sin3x\)
\(d,y=\left|cosx\right|\)
Tìm max, min của hàm số
a) \(y=\sqrt{3}sinx+cosx\)
b) \(y=sin2x-cos2x\)
c) \(y=3sinx+4cosx\)
Tìm GTLN và GTNN của hàm số : 1. y = sinx + 2cosx +1 / 2sinx + cosx + 3
2.y= 2sin^2sinx - 3 sinx cosx + cos^2 x
Giải phương trình : 1. 2sin^2 * 2x + sin7x -1 = sinx
2.cos 4x + 12 sin^2 x -1 = 0
Tịnh tiến đồ thị hàm số y= cos x sang phải \(\dfrac{\pi}{2}\) ta được đồ thị hàm số nào
A. \(y=sinx\)
B.\(y=-cosx\)
C.\(y=\)\(cos\left(x+\dfrac{\pi}{2}\right)\)
D.\(y=sin\left(x-\dfrac{\pi}{2}\right)\)
Tìm GTLN, GTNN của hàm số sau: \(y=\left|sinx+cosx\right|+sin2x\)
Tìm TXĐ của các hàm số sau
\(a,\dfrac{1-cosx}{2sinx+1}\)
\(b,y=\sqrt{\dfrac{1+cosx}{2-cosx}}\)
\(c,\sqrt{tanx}\)
\(d,\dfrac{2}{2cos\left(x-\dfrac{\Pi}{4}\right)-1}\)
\(e,tan\left(x-\dfrac{\Pi}{3}\right)+cot\left(x+\dfrac{\Pi}{4}\right)\)
\(f,y=\dfrac{sinx}{cos^2x-sin^2x}\)
\(g,y=\dfrac{2}{cosx+cos2x}\)
\(h,y=\dfrac{1+cos2x}{1-cos4x}\)
tìm tập xác định của hàm số sau đây:
a)\(y=sin^{x-1}_{x+2}\)
b)\(y=\sqrt{3-2cosx}\)
c)\(y=\sqrt{\dfrac{1+cosx}{1-cosx}}\)