Gọi G là trọng tâm tam giác ABC
\(\Rightarrow T=\sum\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\cdot\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)=3MG^2+\dfrac{4}{9}\cdot\left(m_a^2+m_b^2+m_c^2\right)=3MG^2+\dfrac{4}{9}\cdot\left(\dfrac{2b^2+2c^2-a^2}{4}+\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2b^2+2a^2-c^2}{4}\right)\) = \(3MG^2+\dfrac{1}{3}\left(a^2+b^2+c^2\right)\ge\dfrac{1}{3}\left(a^2+b^2+c^2\right)\) Dấu = xảy ra \(\Leftrightarrow M\equiv G\)