Trong mặt phẳng tọa độ Oxy cho Parabol (P) : y = ax2 và đường thẳng (d) : y = -x + 2
1. Hãy vẽ (P) và (d) trên cùng một mặt phẳng tọa độ
2. Tìm tọa độ giao điểm của (P) và (d)
3. Viết phương trình đường thẳng (d1) : y = ax + b . Biết rằng (d1) song song với (d) và cắt (P) tại điểm A có hoành độ là 2
Giải đúng mk tick cho.
Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = 1/2x2
a) Vẽ đồ thị parabol (P).
a) Tìm a và b để đường thẳng (d): y = a.x + b đi qua điểm (0;-1) và tiếp xúc với (P).
Cho Parabol y=x2 có đồ thị là (P).
a). Vẽ (P)
b). Gọi (D) là đường thẳng có phương trình y=-2x+b. Tìm b biết rằng (D) tiếp xúc với (P). Vẽ (D) và (P) trên cùng một hệ toạ độ. Xác định toạ độ giao điểm của chúng.
1 vẽ đồ thị hàm số y= x²/2 (P) 2 bằng phép tính hãy xác định toạ độ các giáo điểm parabol (P) với đưownhf thẳng (d) có phương trình y=-1/2 x+1 3 với các giá trị nào của m thì đường thẳng (d) y=X+m a cắt parabol (P) b tiếp xúc với parabol c không cắt parabol
Cho biết hàm số y=mx^2 parabol (p) và đường thẳng y=3x+4 Tìm giá trị của m , biết ( p) đi qua điểm M ( 1;1) . Vẽ ( p) trên mặt phẳng tọa độ Oxy với giá trị của m vừa tìm được
mik cần gấp lắm ạ cảm ơn
Trong mặt phẳng tọa độ Oxy cho parabol (P): y = -x2 và đường thẳng (d): y = mx + 2 (m là tham số). Tìm m để (d) cắt (P) tại 1 điểm duy nhất.
1) Cho hai điểm A(-2;m) và B(1;n). Tìm m,n để A thuộc (P) và B thuộc (d).
2) Gọi H là chân đường vuông góc kẻ từ O đến (d). Tìm m để độ dài đoạn OH lớn nhất.
Bài 15: Cho (P): \(y=2x^2\)
1. Vẽ (P)
2. Trên (P) lấy điểm A có hoành độ x = 1 và điểm B có hoành độ x = 2 . Xác định các giá trị của m và n để đường thẳng (d): y = mx + n tiếp xúc với (P) và song song với AB
Bài 5: Cho hàm số (P): \(y=x^2\) và hàm số(d): y = x + m
1. Tìm m sao cho (P) và (d) cắt nhau tại hai điểm phân biệt A và B
2. Xác định Phương trình đường thẳng (d’) vuông góc với (d) và tiếp xúc với (P)
3. Tìm m sao cho khoảng cách giữa hai điểm A và B bằng \(3\sqrt{2}\)
Bài 1: Cho parabol (P): y = 2x2.
1. Tìm giá trị của a,b sao cho đường thẳng y = ax+b tiếp xúc với (P) và đi qua A(0;-2).
2. Tìm phương trình đường thẳng tiếp xúc với (P) tại B(1;2).
3. Tìm giao điểm của (P) với đường thẳng y = 2m +1.