Chương III: PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kimian Hajan Ruventaren

Trên hệ trục tọa độ xOy: cho tam giác ABC có A(-1;1), B(1;3) và trọng tâm G\(\left(-2;\dfrac{2}{3}\right)\). Tìm tọa độ M trên tia Oy sao cho tam giác MBC vuông tại M

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 22:55

\(\left\{{}\begin{matrix}x_C=3x_G-x_A-x_B=-6\\y_C=3y_G-y_A-y_B=-2\end{matrix}\right.\) \(\Rightarrow C\left(-6;-2\right)\)

Gọi \(M\left(0;m\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{BM}=\left(-1;m-3\right)\\\overrightarrow{CM}=\left(6;m+2\right)\end{matrix}\right.\)

\(\overrightarrow{BM}.\overrightarrow{CM}=0\Leftrightarrow-6+\left(m-3\right)\left(m+2\right)=0\)

\(\Leftrightarrow m^2-m-12=0\Rightarrow\left[{}\begin{matrix}m=-3\\m=4\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}M\left(0;-3\right)\\M\left(0;4\right)\end{matrix}\right.\)


Các câu hỏi tương tự
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hiểu Nguyễn
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Vương Kỳ Nguyên
Xem chi tiết
Nguyễn Hải An
Xem chi tiết