Cho hcn ABCD có AB = 2AD, BC = a. Tính Min của độ dài vec tơ \(\overrightarrow{u}=\overrightarrow{MA}+2\overrightarrow{MB}+3\overrightarrow{MC}\), trong đó M là điểm thay đổi trên đường thẳng BC
Từ điêm A nằm ngoài đường tròn (O) tã vẽ tiếp tuyến AB và cắt tuyến ACD với đường tròn sao cho tia AO nằm giữa AB và AD (B:tiếp điểm;C nằm giữa A và D).Gọi M là trung điểm của CD. a) cm AB^2=AC×AD b) cm tứ giác ABOM nt đường tròn (I) . ĐỊNH TÂM I c) đường tròn I cắt đường tròn O tại E. Cm AE là tiếp tuyến của đường tròn
Cho tam giác ABC có AB lớn hơn AC. M là trung điểm của cạnh BC. Trên tia đối của AB lấy điểm N sao cho AN= AM. Chứng minh rằng NC= AB
Bài 1: Cho ∆ABC đều, kẻ AH vuông góc với BC tại H. Trên tia đối của tia BC lấy điểm E sao cho BE = BC. Trên tia đối của tia CB lấy điểm D sao cho CB = CD. a) Chứng minh rằng ∆AEB = ∆ADC b) Từ D kẻ DF vuông góc với AC tại F. Chứng minh rằng ∆CHF cân c) Chứng minh rằng AD//HF d) Từ B kẻ BM vuông góc AE tại M, từ C kẻ CN vuông góc với AD tại N. Gọi I là giao điểm của BM và CN. Chứng minh AI là phân giác của 𝐵𝐴𝐶
Bài 2: Cho ∆ABC có AB= AC = 5cm, BC = 6CM. Kẻ AK vuông góc với BC ( K ∈ BC). a) Chứng minh rằng KB = KC và 𝐵𝐴𝐾 ̂ =𝐶𝐴𝐾 ̂ b) Tính độ dài AK c) Kẻ KE vuông góc với AB ( E ∈ AB) , KD vuông góc với AC ( D ∈ AC). Chứng minh rằng ∆KDE là tam giác cân. d) Chứng minh rằng DE//BC e) Trên tia đối của tia AB lấy điểm M sao cho AB = AM. Chứng minh răng MC vuông góc với BC
Bài 3: Cho ∆ABC vuông tại B. Trên tia đối của tia BC lấy điểm D sao cho BD = BC a) Chứng minh rằng 𝐵𝐴𝐶 ̂ = 𝐵𝐴𝐷 ̂ b) Tính độ dài CD biết AB = 4cm, AC = 5 cm c) Kẻ BE vuông góc với AC ( E ∈ AC); BH vuông góc với AD ( H ∈ AD). ∆HBE là tam giác gì? Tại sao? d) ∆ABC cần có thêm điều kiện gì để ∆HBE đều
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC. Từ C kẻ đường thẳng song song với AB cắt đường thẳng MN tại E. Chứng minh rằng:
a)△ANM = △CNE và CE = MB
b) △BMC = △ECM và MN// BC; MN = \(\frac{1}{2}\) BC
Trong mặt phẳng Oxy cho tam giác ABC, biết đỉnh A(1; 1) và tọa đọ trọng tâm G (1; 2). Cạnh AC và đường trung trục của nó lần lượt có phương trình là \(x+y-2=0\) và \(-x+y-2=0\). Các điểm M và N lần lượt là trung điểm của BC và AC
a) Hãy tìm tọa độ các điểm M và N
b) Viết phương trình hai đường thẳng chứa hai cạnh AB và BC
cho đoạn thẳng AB= 6cm. kẻ đường thẳng d là đường trung trực của đoạn thẳng AB, lấy điểm M thuộc đường thẳng d sao cho khoảng cách từ M đến đoạn thẳng AB=4cm. tính độ dài đoạn thẳng MA,MB
Cho tam giác ABC nội tiếp (O ; R). Gọi E là trung điểm của AB và F là điểm thỏa mãn \(\overrightarrow{AC}=3\overrightarrow{AF}\). Vẽ hình bình hành AEMF. Biểu diễn giá trị nhỏ nhất của P theo R
P = (MA + MB + MC)2 + 11OM2
cho tam giác ABC (AB<AC) trên cạnh AB và AC lấy điểm D và E sao cho BD=CE Gọi I là trung điểm của DE vẽ P sao cho I là trung điểm của BP 1)chứng minh hai tam IDP VÀ IEP bằng nhau từ đó suy ra AB//EP 2,CMR:BAC=2ECP 3,lây M là điểm bất kì trên AC xác định vị trí của M để MB+MP nhỏ nhất