Đặt A \(=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2004}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2004}}+\frac{1}{3^{2005}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)
\(\Rightarrow A=\left(1-\frac{1}{3^{2005}}\right):2\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Leftrightarrow3A=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(\Leftrightarrow3A-A=1-\frac{1}{3^{2005}}\)
\(\Leftrightarrow A=\frac{1-\frac{1}{3^{2005}}}{2}\)
\(A=\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2004}}\)
\(3A-A=1-\frac{1}{3^{2005}}\)
\(A=\frac{1-\frac{1}{3^{2005}}}{2}\)
a=1+3+3^2+...+3^100
=> 3a=3+3^2+...+3^101
=>2a=3^101-1
=>a=(3^101-1):2