Ta xét riêng tử số:
\(1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+......+\frac{1}{97}+\frac{1}{99}\)
\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+......+\left(\frac{1}{49}+\frac{1}{51}\right)\)
\(=\frac{100}{1\times99}+\frac{100}{3\times97}+\frac{100}{5\times95}+......+\frac{100}{49\times51}\)
\(=100\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Bây giờ xét đến mẫu số:
\(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{97\times3}+\frac{1}{99\times1}\)
\(=\frac{2}{1\times99}+\frac{2}{3\times97}+\frac{2}{5\times95}+......+\frac{2}{49\times51}\)
\(=2\times\left(\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+......+\frac{1}{49\times51}\right)\)
Vậy giá trị của biểu thức là: \(\frac{100}{2}=50\)