Cho:
\(Q=\frac{5}{7}.\frac{13}{7^2}.\frac{97}{7^4}.....\frac{3^{2^{99}}+2^{2^{99}}}{7^{2^{99}}}\)
Chứng minh rằng: \(Q\left(7^{2^{100}-1}\right)\in N\).
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Rút gọn
\(A=\frac{21.99+21}{35.201-35}\)
\(B=\frac{\left(-2\right)^{36}.3^{17}}{3^{18}.2^{35}}\)
\(C=\frac{7^{100}-7^{99}}{7^{98}-7^{97}}\)
Tính:
\(\left(\frac{99^9}{11^9}-\frac{99^{99}}{11^{99}}-\frac{99^{999}}{11^{999}}\right).\left(\frac{1}{5}-\frac{1}{7}-\frac{2}{35}\right)\)
Chứng minh rằng :
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Rút gọn
1.\(\left(\frac{2}{45}-\frac{4}{13}-\frac{1}{3}\right):\left(\frac{3}{13}-\frac{4}{15}+\frac{2}{13}\right)\)
2.\(\frac{0,8:\left(\frac{4}{5}.1,25\right)}{0,64-\frac{1}{25}}+\frac{\left(1,08-\frac{2}{15}\right):\frac{4}{7}}{\left(6\frac{5}{9}-3\frac{1}{4}\right)2\frac{2}{17}}\)
3.\(\frac{0,4-\frac{2}{9}+\frac{2}{11}}{1,4-\frac{7}{9}+\frac{7}{11}}-\frac{\frac{1}{3}-0,25+\frac{1}{5}}{1\frac{1}{6}-0,875+0,7}\)
Rút gọn
1. \(\frac{5}{9}.\frac{7}{13}+\frac{5}{9}.\frac{9}{13}-\frac{5}{9}.\frac{3}{13}\)
2. \(\left(\frac{1+\frac{1}{5}+\frac{1}{7}+\frac{1}{11}}{2+\frac{2}{5}+\frac{2}{7}+\frac{2}{17}}:\frac{4-\frac{4}{7}+\frac{4}{9}-\frac{4}{13}}{1-\frac{1}{7}+\frac{1}{9}-\frac{1}{13}}\right):\frac{838383}{808080}\)
thực hiện phép tính( tính nhanh nếu có thể)
a/ \(\frac{-7}{25}.\frac{11}{13}+\frac{-7}{25}.\frac{2}{13}-\frac{18}{25}\)
b/ \(\frac{5}{7}.\frac{1}{3}-\frac{5}{7}.\frac{1}{4}-\frac{5}{7}.\frac{1}{12}\)
c/ \(5\frac{2}{5}.4\frac{2}{7}+5\frac{5}{7}.5\frac{2}{5}\)
d/ \(75\%-1\frac{1}{2}+0,5:\frac{5}{12}-\left(\frac{-1}{2}\right)^2\)
tìm x biết :
a) \(\left(x+\frac{1}{2}\right).\left(\frac{2}{3}-2x\right)=0\)
b) \(\left(x.6\frac{2}{7}+\frac{3}{7}\right).2\frac{1}{5}-\frac{3}{7}=-2\)
c) \(x.3\frac{1}{4}+\left(-\frac{7}{6}\right).x-1\frac{2}{3}=\frac{5}{12}\)
d) \(5\frac{8}{17}:x+\left(-\frac{4}{17}\right):x+3\frac{1}{7}:17\frac{1}{3}=\frac{4}{11}\)
e) \(\frac{17}{2}-\left|2x-\frac{3}{4}\right|=-\frac{7}{4}\)