\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(< \frac{1}{26}+\frac{1}{26}+\frac{1}{26}+...+\frac{1}{26}+\frac{1}{26}\)
\(=\frac{25}{26}< 1\)(sai với đề bài)
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{49}+\frac{1}{50}\)
\(< \frac{1}{26}+\frac{1}{26}+\frac{1}{26}+...+\frac{1}{26}+\frac{1}{26}\)
\(=\frac{25}{26}< 1\)(sai với đề bài)
1) \(CMR:\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+......+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
Chỉ tick cho ai nhanh nhất
Chứng minh
\(\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+....+\frac{1}{50}=1-\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{49}-\frac{1}{50}\)
Các bn giúp mik kiểm tra nha bị mắc chứng thiếu tự tin rùi
Tính:
\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+.....\frac{1}{97}+\frac{1}{99}}{\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+\frac{1}{97\times3}+\frac{1}{99\times1}}\)
Có khó không giúp mình với chiều nay cần gấp
Bài 1: Chứng tỏ các tổng sau không là số tự nhiên:
a. A= \(\frac{1}{2}\)+\(\frac{1}{3}\)+\(\frac{1}{4}\)
b. B= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{8}\)
c. C= \(\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Bài 2: Chứng tỏ rằng:
a. A= \(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+\frac{1}{14}+...+\frac{1}{20}>\frac{1}{2}\)
b. B=\(\frac{1}{50}+\frac{1}{51}+\frac{1}{52}+...+\frac{1}{99}>\frac{1}{2}\)
c. C= \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{100}>1\)
d. D=\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{80}>\frac{7}{12}\)
Bài 3: Cho S= \(\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}.\)Chứng minh rằng \(\frac{3}{5}< S< \frac{4}{5}\)
Bài 4: Cho B= \(\frac{10n}{5n-3}\), tìm số nguyên n để:
a. B có giá trị nguyên b. B có GTLN
Tính D biết : \(D=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{99}{1}+\frac{98}{2}+\frac{97}{3}+...+\frac{1}{99}}\)
6
cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\)
C=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}+\frac{1}{50}\)
CMR:A=B-2C
giúp mk với
tính hợp lý giá trị các biểu thức sau :
A= \(49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
B= \(71\frac{38}{45}-\left(43\frac{8}{45}-1\frac{17}{57}\right)\)
C= \(\frac{-3}{7}.\frac{5}{9}+\frac{4}{9}.\frac{-3}{7}+2\frac{3}{7}\)
D = \(\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right).\frac{4}{5}\)
E= \(0,7.2\frac{2}{3}.20.0,375.\frac{5}{28}\)
F= \(\left(9,75.21\frac{3}{7}+\frac{39}{4}.18\frac{4}{7}\right).\frac{15}{78}\)
Chứng minh :
a) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\) \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}< \frac{3}{16}\)
b)\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+...+\frac{1}{79}+\frac{1}{80}< \frac{7}{12}\)
c) Cho \(S=\frac{3}{10}+\frac{3}{11}+\frac{3}{12}+\frac{3}{13}+\frac{3}{14}\)
Chứng minh \(1< S< 2\)
Cho:
\(Q=\frac{5}{7}.\frac{13}{7^2}.\frac{97}{7^4}.....\frac{3^{2^{99}}+2^{2^{99}}}{7^{2^{99}}}\)
Chứng minh rằng: \(\left(Q.7^{2^{100}-1}\right)\in N\)