Số tự nhiên có 5 chữ số có dạng \(\overline{abcde}\).
a có 4 cách chọn.
b có 4 cách chọn.
c có 3 cách chọn.
d có 2 cách chọn.
e có 1 cách chọn.
\(\Rightarrow\) Có \(4.4.3.2.1=96\) số tự nhiên thoả mãn.
Lời giải:
Gọi $S(A)$ là tổng các số tự nhiên gồm 5 chữ số khác nhau lập từ 0,1,2,3,4 mà số đầu tiên có thể là 0
Gọi $S(B)$ là tổng các số tự nhiên gồm 5 chữ số khác nhau mà số đầu tiên là $0$
Trong tập A, mỗi số $0,1,2,3,4$ xuất hiện $\frac{5!}{5}=24$ lần ở mỗi vị trí chục nghìn, nghìn, trăm, chục, đơn vị. Do đó:
$S(A)=24(0+1+2+3+4)(1+10+10^2+10^3+10^4)=2666640$
Trong tập $B$, mỗi chữ số $1,2,3,4$ xuất hiện $\frac{4!}{4}=6$ lần ở mỗi vị trí. Do đó:
$S(B)=6(1+2+3+4)(1+10+10^2+10^3)=66660$
Tổng các số tự nhiên có 5 chữ số khác nhau lập từ 0,1,2,3,4 là:
$S(A)-S(B)=2599980$